Inventory Management with Advance Demand Information and Flexible Delivery

Tong Wang1 Beril Toktay2

1Decision Sciences Area
INSEAD

2College of Management
Georgia Institute of Technology

January 2008
An Example

Point Processes and Queues: Martingale Dynamics (Advances in I Geochemistry) (Hardcover)
by Pierre Brémaud (Author)

Price: £51.50 & this item Delivered FREE in the UK with Super Saver Delivery. See

Availability: Usually dispatched within 7 to 12 days. Dispatched from and sold by Amazon.co.uk.

24 used & new available from £41.62
Traditional Inventory Model

Scarf (1960), with supply leadtime L

- Cost structure: ordering, holding, shortage
- Main results:
 - The system can be characterized by the Inventory Position
 - (s, S) policy is optimal
- Immediate delivery
Inventory Model with ADI – Homogeneous Customer Base

Hariharan and Zipkin (1995), discretized version

- Demand information arrives T periods (*demand leadtime*) in advance
- Main results:
 - Symmetry between supply leadtime L and demand leadtime T
 - *Effective leadtime* $= L - T$
- **Homogeneous customers**
Gallego and Özer (2001)

- Demand leadtime T is heterogeneous
- Main results:
 - Modified Inventory Position (MIP) = Inventory Position - advance demands
 - Modified state-dependent $(s(V), S(V))$ policy is optimal
- **Exact delivery**: Demand d_i^j has to be satisfied exactly in period j
Inventory Model with ADI and Flexible Delivery

Definition

Flexible Delivery: Demand d^i_j is allowed to be fulfilled within the time-window $[i, j]$.

Research Questions:

- What is the optimal inventory policy?
- What is the benefit of flexible delivery?
- How does flexible delivery interact with advance demand information?
Inventory Model with ADI and Flexible Delivery

Overview of the Models

I. Homogeneous customers

• FCFS allocation is optimal
• Existing results still hold

II. Heterogeneous customers

• Challenge: Demand Cross-over
• Approximation and heuristics
Traditional Model

Single-period Loss Function ($L = 0$)
Homogeneous ADI Model with Delivery Flexibility

Single-period Loss Function \((L = 0, T = 2)\)

\[
L(X_{i+1}) = x_i + z_i - v_i^i - v_i^{i+1} - d_i^{i+2}
\]

Wang and Toktay

Advance Demand Information and Flexible Delivery
Theorem

The system can be characterized by the

\[\text{Modified Inventory Position} = \text{Inventory Position} - \text{Advance Demands} \]

and an information state \(\hat{V} \). And a state-dependent \((s(\hat{V}), S(\hat{V})) \) policy is optimal.
Numerical Illustration
Optimal Cost as a function of L and T
Demand Cross-over in the Heterogeneous Model

- Replenishment: z_i
- Inventory: x_i
- AD Profile Vi: v_i, v_{i+1}
- Demand in i: d_i, d_{i+1}, d_{i+2}
Demand Cross-over in the Heterogeneous Model

Replenishment

Inventory

AD Profile V_i

Demand in i

z_i

x_i

V_i

V_{i+1}

d_i

d_{i+1}

d_{i+2}

Wang and Toktay

Advance Demand Information and Flexible Delivery

12 / 21
Demand Cross-over in the Heterogeneous Model

- Replenishment: z_i
- Inventory: x_i
- AD Profile V_i
- Demand in i: d_i^1, d_i^{i+1}, d_i^{i+2}
Demand Cross-over in the Heterogeneous Model

Replenishment

Inventory

AD Profile Vi

Demand in i

Demand in i+1

Wang and Toktay
Advance Demand Information and Flexible Delivery

12 / 21
Approximation

$L = 0$ and $T = 2$

- The allocation assumption (Eppen and Schrage 1981)
- Convex single-period loss function \Rightarrow optimality of $(s(V), S(V))$ policy

Policy is not implementable; cost is a lower bound of the original problem
Protection Level Heuristics

$L = 0$ and $T = 2$

- Reserve protection stocks before satisfying non-urgent demands

- Three protection levels considered:
 - PL(0)–zero protection: $\sigma_i = 0$
 - PL(Σ)–full protection: σ_i covers the whole support of d_{i+1}^{i+1}
 - PL(σ)–“optimal” protection:
 \[
 \sigma_i = \arg \min \left\{ h \cdot \sigma_i + p \cdot \mathbb{E}\left[(d_{i+1}^{i+1} - \sigma_i)^+\right] \right\}.
 \]
Protection Level Heuristics

$L = 0$ and $T = 2$

Quasiconvex Single-period Loss Function
Numerical Comparison

A Typical Case \((L = 0, T = 2; K = 100, h = 1, p = 9)\)
Numerical Comparison

An Extensive Test \((L = 0, 1, 2, 3, 4; K = 50, 100, 200; h = 1, 3, 5; p = 9, 19, 29)\)

Optimality gap

![Graph showing Optimality gap with different values of L, K, h, and p]

Cost saving due to delivery flexibility

![Graph showing Cost savings with different values of L, K, h, and p]

(Full height — AP vs. ADI, darker bar — PL(σ) vs. ADI)
Conclusion

• Contributions
 • Optimality of the State-dependent \((s(V), S(V))\) policy in the homogeneous model
 • Implementable and near-optimal (2% optimality gap) heuristics for the heterogeneous case

• Managerial Implications
 • Significant cost savings from delivery flexibility: 14%
 • Asymmetry: extending demand leadtime is more beneficial than shrinking supply leadtime
 • Advance demand information and delivery flexibility are complements
 • Win-win solution for both parties

• Future Research
 • Pricing and incentive scheme design
 • Consumers’ strategic behavior in response to flexible delivery under repeated interactions