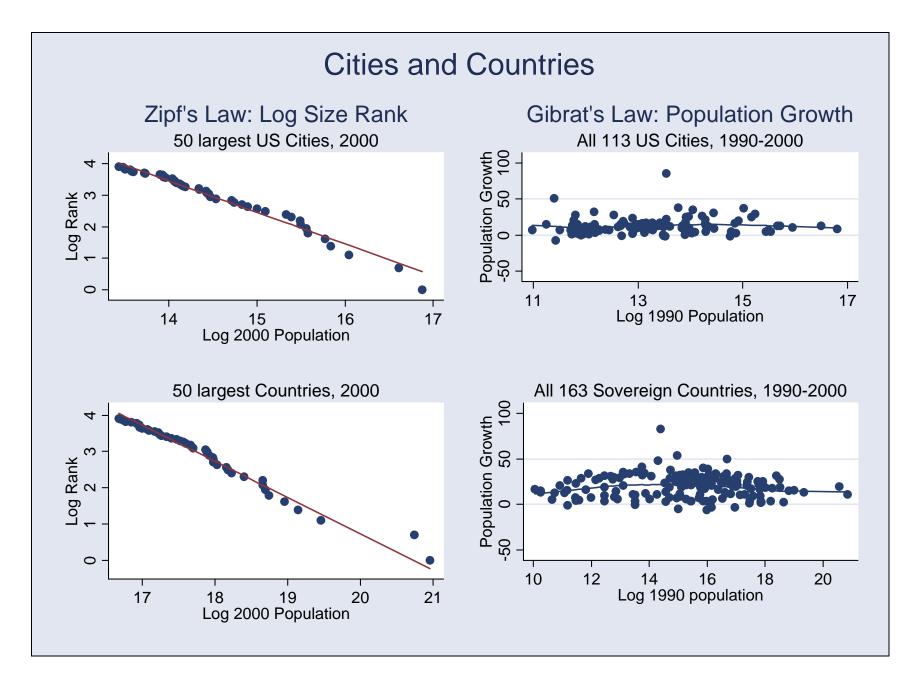
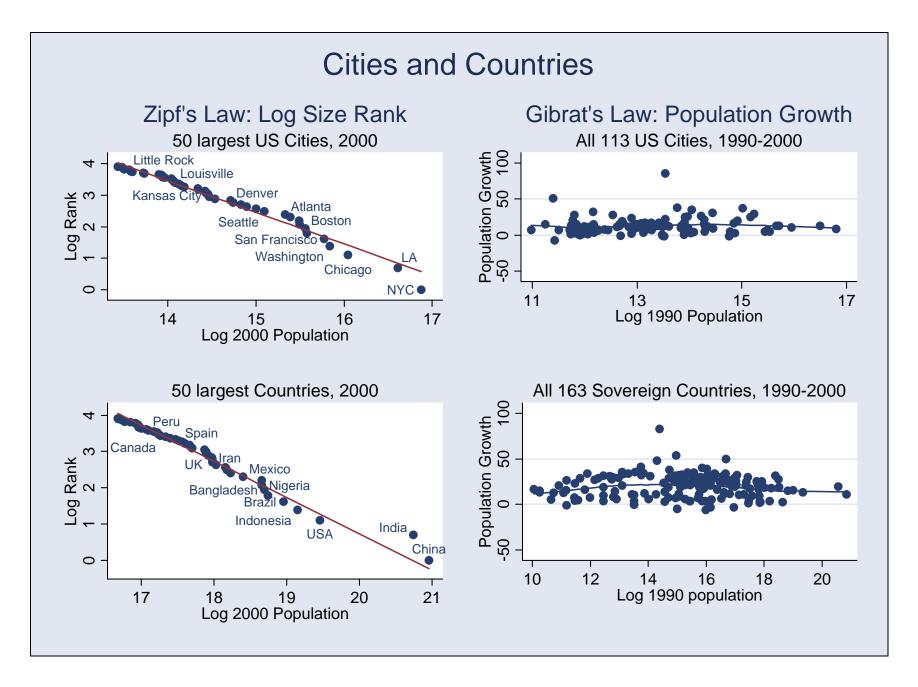
Cities and Countries


Andrew K Rose UC Berkeley, CEPR and NBER


Motivation

- Cities are a basic unit of urban economics
- Countries are a basic unit of international economics
- There is no obvious reason why the distribution of one should look the distribution of the other

The Issue

• But they do!

- I focus on two aspects of size distribution:
 - 1) "Zipf's Law [for Cities]"
 - The rank (by size) of a city is almost perfectly inversely correlated with its size
 - 2) "Gibrat's Law [for Cities]"
 - The growth of a city is basically independent of its size
- Both are well-known, widely documented, undisputed
- Both have prompted much theorizing

Zipf's Law [for Cities]

- \circ Rank cities by size: $S_1 > S_2 > ... > S_N$.
- ο Zipf: P(Size>S)≈ α S^{- β} where: α a constant, β ≈1
- o Much recent work: Eeckhout (2004), Gabaix (1999),
 - Krugman (1996), Rossi-Hansberg and Wright (2004);
 - Gabaix and Ioannides (2004).
- o Can check via:
 - 1. Graphs
 - 2. Regressions of ln(i) on constant and $ln(S_i)$

Smaller Factoids on Zipf's Law [for Cities]:

- 1. Broader Sample lowers slope (too few small cities)
- 2. Narrowing Definition raises slope
- 3. Works across time and countries

Gibrat's Law [for Cities]

• Expected Growth of City independent of initial size
• Again, much recent work: Eeckhout (2004), Gabaix (1999), Gabaix and Ioannides (2004).

My Strategy

o Replicate stylized facts for cities

• Check analogues for countries

Small Issue: What is a "Country"?

No standard definition of "country" existsTwo economic definitions:

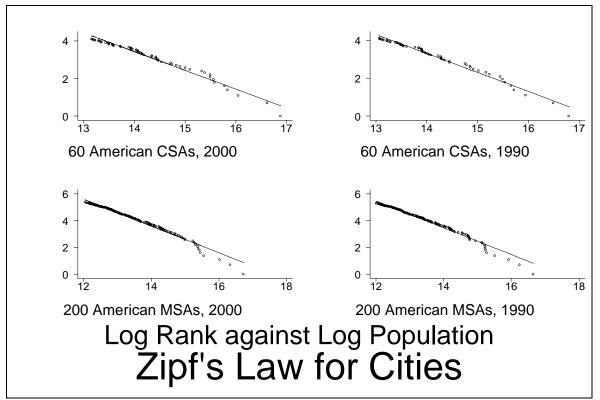
- Ricardo: area within which factors are mobile, between which factors are immobile
- 2. Political: area controlled by government with monopoly of legal coercion

• In practice I use areas considered by *WDI* and also check results on independent sovereign national states

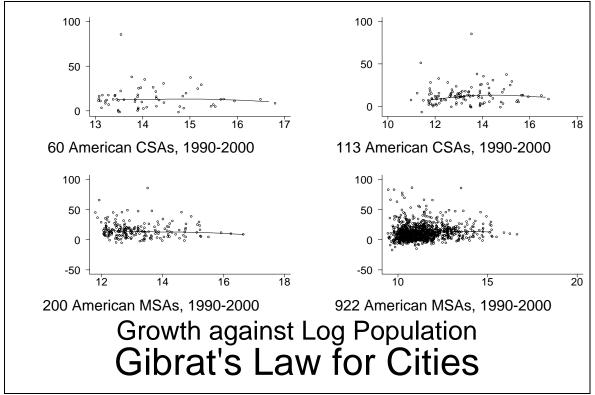
Unimportant in Practice

Most questionable "countries" are smallStill, interesting to note existence of:

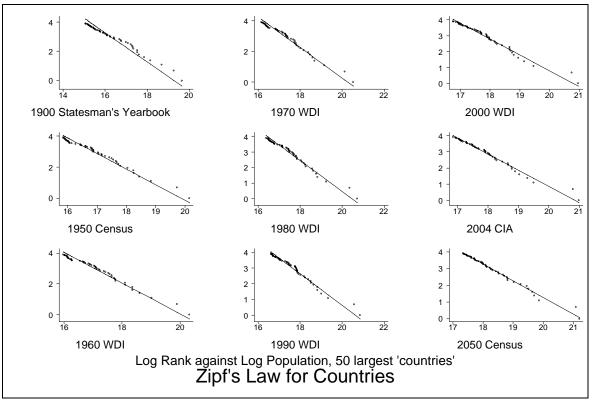
- 1. SARs (e.g., Hong Kong)
- 2. Associated States (Puerto Rico)
- 3. Colonies (Cayman Islands)
- 4. Overseas Possessions (Reunion)
- 5. ? (West Bank and Gaza)


Data Sources

American Cities from Census


Combined Statistical Areas (CSAs)
Metropolitan/Micropolitan Statistical Areas (MSAs)
Census Designated Places (CDPs)

Countries


1900 from Statesman's Yearbook 1901
1950 from Census
1960-2000 from World Development Indicators
2004 from CIAs World Factbook
2050 projection from Census

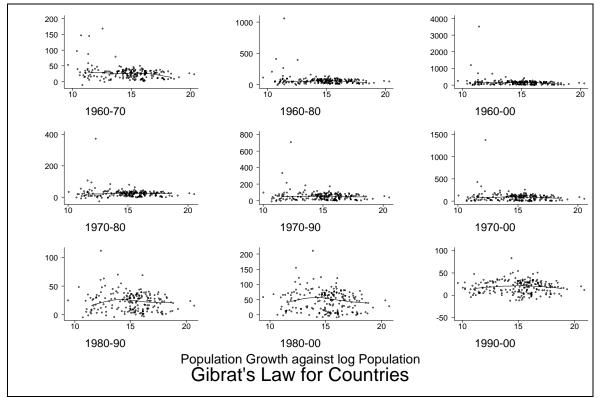

Figure 1: Size Distribution of Cities

Figure 2: City Population Growth Rates

Figure 3: Size Distribution of Countries

Figure 4: Country Population Growth Rates

Table 1: Zipf City Coefficients

Table 1. Zipi City Coefficients						
Year	City	Sample	Slope	\mathbf{R}^2		
	Measure		(se)			
2000	CSAs	50	-1.03	.98		
			(.21)			
1990	CSAs	50	-1.03	.98		
			(.21)			
2000	MSAs	200	-1.01	.98		
			(.1)			
1990	MSAs	200	-1.02	.98		
			(.1)			
2000	CSAs	113	73	.93		
			(.10)			
1990	CSAs	113	74	.93		
			(.10)			
2000	MSAs	922	82	.98		
			(.04)			
1990	MSAs	922	83	.98		
			(.04)			
2000	CDPs	601	-1.34	.998		
			(.08)			

Coefficients are slopes from OLS regressions of log rank on log population.

Table 2: Gibrat City Coefficients					
City Measure	Sample	Slope (se)	\mathbf{R}^2		
CSAs	50	-1.48	.01		
		(2.08)			
MSAs	200	01	.00		
		(.78)			
CSAs	113	.97	.01		
		(.82)			
MSAs	922	1.07**	.01		
		(.39)			

Table 2: Gibrat City Coefficients

Table 3: Zipf Country Coefficients

Table 3. Zipi Coui				
Year	Slope	\mathbf{R}^2		
	(se)			
1900	78	.99		
	(.16)			
1950	87	.99		
	(.17)			
1960	88	.98		
	(.18)			
1970	89	.98		
	(.18)			
1980	91	.98		
	(.18)			
1990	93	.98		
	(.19)			
2000	95	.98		
	(.19)			
2004	96	.98		
	(.19)			
2050	99	.99		
	(.20)			

		All		Sov's		Тор	Тор
						50	50
Initial	Final	Slope	\mathbf{R}^2	Slope	\mathbf{R}^2	Slope	\mathbf{R}^2
Year	Year	(se)		(se)		(se)	
1960	1970	-3**	.08	7	.01	-1.1	.01
		(1.0)		(.8)		(1.4)	
1960	1980	-9.3*	.05	-5.0*	.02	-3.0	.01
		(4.6)		(2.0)		(3.3)	
1960	1990	-17*	.05	-10**	.07	-5.1	.01
		(8.4)		(3.5)		(5.7)	
1960	2000	-26.6	.04	-20**	.11	-8.9	.02
		(14.4)		(5.6)		(8.5)	
1970	1980	-1.8	.01	-1.3	.02	-2.7	.05
		(1.36)		(.9)		(1.5)	
1970	1990	-4.3	.02	-2.9	.02	-6.1	.05
		(2.7)		(1.8)		(3.5)	
1970	2000	-7.8	.02	-7.3*	.02	-11.2	.06
		(4.9)		(3.0)		(5.8)	
1980	1990	8	.01	9	.01	-2.4	.04
		(.6)		(.7)		(1.4)	
1980	2000	-1.7	.01	-3.6*	.04	-6.1	.05
		(1.1)		(1.5)		(3.2)	
1990	2000	1	.00	-1.2	.02	-2.5	.04
		(.4)		(.7)		(1.6)	

Cities work as usual

OZipf's Law (and deviations) works wellOGibrat's Law works well

Countries work basically as well

oZipf's Law (and deviations) works well

- Slopes close to -1, insignificantly different
- High goodness of fit
 - 1900 the biggest exception
 - Broader sample lowers slope
 - Exact definition of "country" unimportant
 - Works across time

o Gibrat's Law works pretty well too

- Some signs of negative significant relationships
- Poor Fit

Tangent: Log-Normality describes Country Populations

o Little Kurtosis

o Some skewness (too fit small countries)

o Can't reject statistically 1960-2000

So what?

- An empirical regularity: size distribution of cities similar to size distribution of countries
- o Theoretical Explanation?
 - Little work on size of countries (except Alesina-

Spolaore, who don't study distribution)

Much theoretical work on city-size distributions

- Ex: Eeckhout (2004), Krugman (1996), Rossi-Hansberg and Wright (2004)
- All balance agglomeration benefits (knowledge spillovers, scale economies ...) with negative externalities (congestion, commuting costs, land prices, ...)
- Need to have and balance both externalities to induce mobile labor to migrate between cities appropriately

City-Size theory not easily applicable to countries!

- o Countries control policies, institutions more
- Mobility higher between cities inside country than
 - between countries
- Externalities, agglomeration effects, amenity shocks, congestion costs, scale economies ... all more plausible at local than national level

But common empirical regularity makes common theoretical explanation natural.

Conclusion

o Cities and Countries both adhere reasonably well to:

a) Zipf's (size-rank) Law; and

b) Gibrat's (growth) law

 Common empirical resemblance cries out for common theoretical explanation