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Abstract 
This paper develops a simple new methodology to test financial market integration.  Our 
technique is tightly based on a general intertemporal asset-pricing model, and relies on 
estimating and comparing expected discount rates across asset markets.  Expected discount rates 
are allowed to vary freely over time, constrained only by the fact that they are equal across (risk-
adjusted) assets.  Assets are allowed to have very general risk characteristics, and are constrained 
only by a linear factor-model of covariances with the discount rate over short time periods.  The 
technique is undemanding in terms of both data and estimation, and includes CAPM. 
consumption-based models, various ICAPM and other models as special cases.  We provide a 
variety of domestic and international empirical illustrations of our technique, and find 
surprisingly little evidence of integration.  While the S&P 500 market seems typically to be 
integrated, others are not, including: the NASDAQ, the Toronto Stock Exchange, and three 
different classes of American bonds.  Further, there is little evidence of integration between these 
apparently deep frictionless financial markets. 
 
JEL Classification Numbers: F32, G15  
 
Keywords: discount, rate, intertemporal, financial, market, expected, price, stock, bond. 
 
 
*  Flood is Senior Economist, Research Department, International Monetary Fund.  Rose is B.T. 
Rocca Jr. Professor of International Business, Haas School of Business at the University of 
California, Berkeley, NBER Research Associate, and CEPR Research Fellow.  We thank Pedro 
Rodriguez and Rafael Romeu for assistance with the data and David Bowman, Jon Faust, Cam 
Harvey, Robert Hodrick, Jonathan Kearns, Rich Lyons, Matt Pritzker, Tony Richards, Mark 
Rubinstein, Ken Singleton, Antonio Spilimbergo, Richard Stanton, Lars Svensson, Janet Yellen, 
and seminar participants at the Federal Reserve Board, the International Monetary Fund, Reserve 
Bank of Australia for comments.  Rose thanks INSEAD, the IMF, and the RBA for hospitality 
during the course of this research.  The data set, sample E-Views programs and output, and a 
current version of this paper are available at http://faculty.haas.berkeley.edu/arose. 



 1

1: Defining the Problem 
 

What does securities market integration mean? We adopt the view that financial markets 

are integrated when assets are priced by the same stochastic discount rate.  More precisely, we 

define security markets to be integrated if all assets priced on those markets satisfy the pricing 

condition: 
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where: j
tp  is the price at time t of asset j, Et() is the expectations operator conditional on 

information available at t, 1+td  is the market discount rate for income accruing in period t+1 (also 

widely known as the intertemporal marginal rate of substitution, the growth of marginal utility, 

the zero-beta return, or a pricing kernel), and j
tx 1+  is the income received at t+1 by owners of 

asset j at time t (the value of the asset plus any dividends or coupons).1  The substantive point of 

our definition is that all assets in a market share the same discount rate. There is no asset-specific 

discount rate in an integrated market, and no market-specific discount rate in markets that are 

integrated with each other.  We rely only on a completely standard and general intertemporal 

model of asset valuation.2 

Our object of interest in this study is 1+td , the discount rate.  More precisely, we are 

concerned with estimates of the expected market discount rate, 1+ttdE , for two reasons.  First, 

learning more about discount rates is of intrinsic interest, and has driven much research (e.g., 

Hansen and Jagannathan, 1991, who focus on their second moments).  The market discount rate 

is the unobservable DNA of intertemporal decisions; characterizing its distribution is a central 
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task of Economics and Finance.  The discount rate ties pricing in a huge variety of asset markets 

to peoples’ saving and investment decisions.  While the discount rate itself is unobservable, we 

can use asset prices and payoffs to characterize aspects of its distribution. 

Second, measures of the expected discount rate lead naturally to an intuitive test for 

integration; in this paper, we propose and implement such a simple test for the equality of 1+ttdE  

across sets of assets.  The logic of our study is as follows: By definition markets are integrated 

when assets in those markets are priced by the same discount rate.  If 1+td  is equal across 

markets then so too must be 1+tt dE . We conduct internal and cross-market tests for equality of 

1+tt dE  estimates inferred from different asset portfolios. 

 

2: Empirical Strategy 

 We key off the fact that in an integrated market, the discount rate prices all assets held by 

the marginal asset holder.  Indeed what we mean by asset market integration is that the same 

discount rate prices all the assets.  In other words, if we could extract dt+1 (or its expectation) 

independently from a number of different asset markets, they should all be the same if those 

markets are integrated. 

Consider a generic identity related to (1): 
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where COVt() denotes the conditional covariance operator.  It is useful to rewrite this as 
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where )(/1 1+≡ ttt dEδ and j
t 1+ε  ≡ )( 11

j
tt

j
t xEx ++ − , a prediction error. 

We then impose two mild restrictions: 

 

1) Rational Expectations: j
t 1+ε  is assumed to be white noise, uncorrelated with information 

available at time t, and 

2) Constant Asset-Specific Effects: ),( 11
j

ttt xdCOV ++  = i
t

i
j

i
j fββ Σ+0 , for the relevant sample, 

 

where: 0
jβ  is an asset-specific intercept, i

jβ  is a set of I asset-specific factor coefficients and i
tf  

a vector of time-varying factors. 

With our assumptions, equation (3) becomes a panel estimating equation. We exploit 

cross-sectional variation to estimate )}({ tE δ , coefficients that are time varying but common to all 

assets.  These discount rates are the focus of our study.  We use time-series variation to estimate 

the asset-specific “fixed effects” and factor loadings },{ 0 iββ , coefficients that are constant 

across time.  Intuitively, these coefficients are used to account for asset-specific systematic risk 

(the covariances).  We treat them as nuisance coefficients, required only to clear the way to 

produce estimated discount rates. 

 Estimating (3) for a set of assets j=1,…,J0 and then repeating the analysis for the same 

period of time with a different set of assets j=1,…,J1 gives us two sets of estimates of {E(d)}, a 

sequence of estimated discount rates.  These can be compared directly, using conventional 
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statistical techniques.  In particular, estimated discount rates can be compared either one by one 

(using t-tests), or jointly (using a likelihood-ratio test).  Under the null hypothesis of market 

integration, the two sets of E(d) coefficients are equal. 

Our assumptions are weak.  It seems uncontroversial to assume that expectations are 

rational for financial markets, at least in the sense that pricing errors are not ex ante predictable.  

It also seems reasonable to assume that the firm-specific covariances (of payoffs with the 

discount rate) are either constant or depend on only a small number of factors; it is certainly 

standard practice (e.g., Fama and French, 1996).  Further, we have to make the latter assumption 

only for short time periods. 

Our methodology has a number of strengths.  First, it is based on a general intertemporal 

theoretical framework, unlike other measures of asset integration such as stock market 

correlations (see the discussion in e.g., Adam et. al. 2002).  Second, we do not rely heavily on a 

particular asset-pricing model (e.g., the CAPM used by Bekaert and Harvey, 1995), though 

standard models are completely consistent with our methodology.  Third, we do not need to 

model the expected discount rate directly.  The discount rate need not be determined uniquely, so 

long as the expectation of the discount rate is unique.  Fourth, our strategy requires only two 

relatively mild assumptions; we need not assume e.g., complete markets or homogeneous 

investors, or that we can model “mimicking portfolios” well.  Fifth, the technique requires only 

accessible and reliable data on asset prices, returns and time-varying factors (if the latter are 

employed); no other data is required (e.g., the “world” or “market” portfolio).  Sixth, the 

methodology can be used at very high frequencies and at low frequencies as well (though the 

latter requires a set of reasonable factors).  Seventh, the technique can be used to compare 

expected discount rates across many different classes of assets including domestic and foreign 
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stocks, bonds, and commodities.  Next, the technique is easy to implement and can be applied 

with standard econometric packages; no specialized software is required.  Finally, the technique 

is focused on an intrinsically interesting object, the estimated expected discount rate. 

 

3: Relationship to the Literature  

We consider the pricing of two assets to be integrated when the discount rate ( 1+td ) used 

to price next period’s payoff to one asset, is the same as the discount rate used to price the same-

period payoff to the other asset.. This definition of asset integration holds across asset pairs, asset 

portfolios, and asset markets.  Indeed, it provides our definition of an asset market, which is a 

portfolio of assets priced by the same discount rate.  The discount rate accounts fully for 

aggregate risks, is stochastic across periods, and is fully consistent with all intertemporal models 

of asset pricing. 

An example may help to fix ideas.  Consider a representative-agent model of a macro-

economy.  Suppose that the agent holds a risky asset – say an equity share.  The Euler equation 

characterizing the agent’s holding of this asset is: 
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where: 1<ρ  is a constant, )(' tcu  is the marginal utility of consumption at time t and the prices 

and payoffs are real.   In this equation (1’), 
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.  We refer to 1+td as the discount rate 

because it discounts things from time t+1 to today, time t.  The discount rate is not necessarily 
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the constant 1<ρ , but it could be.  This discount rate prices risks occurring in j
tx 1+  that covary 

with the discount rate.3 

Equation (1’) illustrates the crucial point that the discount rate has no special provision 

for asset j.  In equation (1’), idiosyncratic risks are not priced; only aggregate risks are priced. 

This is a tautology, but a useful one.  The only way a risk connected to asset j will be priced is to 

the extent that the risk is correlated with aggregate risk.  If asset j contains any remaining risk, 

that risk is idiosyncratic and disappears upon aggregation. When the discount rate is the same 

across a portfolio of assets, then the asset-specific risks are shared by holders of those assets.  

When it is different across asset portfolios, then risks connected to those portfolios are not shared 

across portfolio holders.   

Equation (1’) is just an example.  The stochastic variable we call 1+td  arises in any 

context where people buy something today that is expected to pay off tomorrow.  For example, 

there need be no representative agent, and everyone need not hold the same portfolio.  This paper 

is concerned with characterizing and testing aspects of the distribution of 1+td , an unobservable 

variable.  From observable data on asset prices and payouts, we infer properties of agent’s beliefs 

about the distribution of the discount rate. 

Before we recount the most important contributions in the literature relevant to our 

investigation, we emphasize that we break from the literature at the most fundamental level.  The 

literature is nearly uniform in its concentration on the variance of the discount rate, and its 

covariance with asset payouts.  We develop these moments but only as nuisance coefficients, we 

need to clear from our path in order to measure the estimated discount rate, 1+ttdE . We do not 

assume 1+td  (and therefore 1+ttdE ) to be equal across all assets or across all portfolios of assets. 

Instead, we estimate 1+ttdE  in panel regression models, and test the proposition of cross-portfolio 
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equality of 1+ttdE .  That is, we check for asset integration empirically. Are the 1+ttdE  estimates 

produced from two asset portfolios significantly different from each other?  If not, we cannot 

reject asset integration.  If so, we can. 

Most of the literature assumes 1+ttdE  to be equal across assets because it is convenient to 

do so.  Consider the generic asset-pricing equation as applied to a safe government security, sold 

at a price of $1 and paying )1$( ti+  next period.  This becomes: 

 

))1((1 1 ttt idE += +  

 

Since we have assumed the payment )1$( ti+  to be risk free, it follows that 1)1/(1 +=+ ttdEi .  Of 

course this is useful for assets other than government-backed ones only if the discount rate for 

those non-government assets is identical to the discount rate for government-backed assets.  We 

test for the equality of expected discount rates across classes of assets, rather than assume that 

equality. 

Our ideas build especially on Hansen and Jagannathan (1991), Cochrane ( 2001), and 

Brandt, Cochrane and Santa-Clara ( 2002).  The application is indirect, but the lineage is clear.  

All these authors use equations like equation (1’) to construct bounds concerning the standard 

deviations of d and of asset prices. Where they concentrate on second moments we concentrate 

on first moments.  Chabot (2000) independently uses an approach similar to ours to assess stock 

market integration in the nineteenth century, while Chen and Knez (1995) provide a related 

application. 

We also pull ideas from mainstream Finance’s asset-pricing econometrics as summarized 

by Cochrane (2002).  This branch of inquiry was pioneered by Sharpe (1964) and refined 
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subsequently by many others, including Fama (1970, 1991); Cochrane (2002) provides an 

excellent survey.  Our relation to this empirical literature can be seen from our payoff equation 

(3), which we repeat as:   

 

j
t

j
ttt

j
tt

j
t xdCOVpx 1111 )),(( ++++ +−= εδ       (3) 

 

When it is assumed that tt i+=1δ ,  we obtain 
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The term ),cov()1( `11
j

ttt xdi +++  is then modeled in this literature as a function (usually linear) of 

market-wide factors.  The factors are market-wide, because it is assumed that idiosyncratic 

factors are not relevant to ),cov()1( `11
j

ttt xdi +++ .4 

We differ from this Finance standard in three aspects.  First, we do not assume tt i+=1δ .  

Instead, we estimate tδ  each period based on a portfolio of assets we maintain to be integrated; 

tδ̂  is an estimated or “shadow” risk-free return. We then test sets of tδ̂  from one portfolio against 

those obtained from another portfolio.  If the assets in the two portfolios are priced by the same 

d, then the tδ̂  will not differ significantly. 

Second and less important, we concentrate attention on tδ̂ , not on estimates of factor 

loadings (regression coefficients) estimated in linear models of ),cov()1( 11
j

ttt xdi +++ . Because 

we concentrate on tδ̂ , our focus is on the cross-sectional dimension of the panel, e.g., the number 
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of stocks, rather than the length of the time series.  Our time series dimension is short by Finance 

standards; we use one or two months of daily data.  Limiting our time dimension is intended to 

minimize specification errors resulting from time-variation in factor loadings (and factor), but it 

also limits also the estimation precision of time-constant parameters. 

Third, our estimating equation (3) is non-linear while equation (3’), the Finance standard, 

is linear when ),cov()1( 11
j

ttt xdi +++  is linear.  Thus, in our specification the term 

),cov( 11
j

ttt xd ++δ  – the compound value of bearing asset j’s risk from t to t+1—is time varying 

because of time variation in the factors explaining ),cov( 11
j

tt xd ++  and because of time variation in 

tδ .  When constrained by )1( tt i+=δ , variation in this term is limited because in practice 

monetary authorities smooth short-term interest rates. 

The tradition in International Finance to which we owe our greatest debt is surveyed by 

Karolyi and Stulz (2002) and known as the world CAPM (WCAPM) literature; see, e.g., Solnik 

(1974), and the recent contributions by Edison and Warnock (2003) and Goetzmann, Li, and 

Rouwenhorst (2001).  This is very close to our work in spirit, but more specialized in 

application.  Recall that the Capital Asset Pricing Model is a theory of 1+td .  In Sharpe’s CAPM, 

,11
m
tt bRad ++ +=  where a and b are data-determined constants and m

tR 1+  is the return on the 

domestic-market portfolio.  Turning this model into its international version entails moving from 

m
tR 1+  to w

tR 1+ , where w
tR 1+  is the return on the world portfolio.  The idea is if CAPM, or a variant, is 

correct and asset markets are integrated internationally, then the process of world asset 

integration involves d’s moving toward w
tbRa 1++  (or the multi-factor equivalent) from some 

domestic-economy initial position.  We encompass single-factor WCAPM and its multi-factor 
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variants as special cases. Instead of our having to take a strong stand on a, b and the identity of 

m
tR 1+  or w

tR 1+ , we estimate d directly.  

 Finally, a few words on arbitrage and replication.  Replication is a fundamental idea in 

finance; two identical cash flows should have the same price, thereby precluding arbitrage.  To 

use our notation, two assets with identical x’s should have the same p’s.  This of course assumes 

that the same discount rate is used; if the same discount rate were not applicable to two assets 

with identical cash flows, they would not have identical prices.  Thus equality of discount rates is 

critical to the replication/no arbitrage pricing technique commonly used in finance. 

Our methodology is completely consistent with that of replication; in an arbitrage-free 

world, if we examined a set of assets with identical x’s, not only would their prices be identical, 

but our technique would deliver identical expected discount rates.  However, though our 

methodology does not preclude them, it doesn’t need or require identical payoffs. 

When/if we find different estimated discount rates, it does not necessarily imply a 

deviation from arbitrage since we do not rely on comparing identical cash flows.  Thus, our 

methodology is really an extension of the concept of market integration, beyond the sphere 

where one can apply replication arguments.  That is, this project is fundamentally about testing 

asset integration when one cannot readily apply a replication/no-arbitrage argument. 

 

4: Implementation 

We begin by estimating a model with firm-specific intercepts and a single time-varying 

factor.  In practice, we divide through by lagged prices (and redefining residuals and coefficients 

appropriately): 
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for assets j=1,…,J, periods t=1,…,T.  That is, we allow }{δ  to vary period by period, while we 

use a “two-factor” model and let {ß} = },{ 10 ββ vary asset by asset.  We normalize the data by 

lagged prices since we believe that )/,( 111
j

t
j

ttt pxdCOV −++  can be modeled by a simple factor 

model with time-invariant coefficients more plausibly than ),( 11
j
ttt xdCOV ++ , and to ensure 

stationarity of all variables.5 

 Equation (4) can be estimated directly with non-linear least squares.  The degree of non-

linearity is not particularly high; conditional on {d} the problem is linear in {ß} and vice versa.6  

We also use robust (heteroskedasticity and autocorrelation consistent “Newey West”) covariance 

estimators.7 

A few words on our choice of the factor model are in order.  Our model is more general 

than, and subsumes the static Capital Asset Pricing Model (CAPM) for two reasons.  First, the 

CAPM models the discount rate as a linear function of the “market return” and thus delivers an 

asset-specific correlation that has a time-invariant correlation with “the market.”  This implies a 

constant correlation of the discount rate with the asset, which would be picked up by our asset-

specific intercepts }{ 0
jβ .  Second, the CAPM (in both single and multi-factor versions) estimates 

discount-rate covariances conditional on  either  E(d) = 1/(1+i) or on  some other maintained 

model for E(d), e.g., )
)('

)('
()( 1

1
t

t
t cu

cu
EdE +

+ =
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.  We need not maintain any particular model of 

E(d); it remains a vector of unconstrained coefficients estimated period by period in our 

methodology. 
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We choose as our single time-varying factor the square of the market return, that is 

[ln(Index)t- ln(Index)t-1]2 where Index is e.g., the S&P 500 index when we examine large 

American stocks (and e.g., the NASDAQ when we examine NASDAQ stocks, etc.).8  This seems 

a natural choice to us; it is a simple function of a relevant aggregate shock that is easily 

observable.  While we think of this as consistent with the spirit of the Intertemporal Capital 

Asset Pricing Model (ICAPM), it does not seem to be a particularly important issue, and we 

discuss a few different factor models below. 

 We start with a moderately high frequency approach.  Using daily data allows us to 

estimate the coefficients of interest {d} without assuming that firm-specific coefficients are 

constant for implausibly long periods of time.9 

 

5: A Detailed Illustration: Large American Stocks 

 Our empirical work begins with an examination of the integration of deep American 

equity markets.  Large American stocks are traded on liquid markets, which we consider a priori 

to be integrated.  We begin with daily data over a quiet two-month period, April-May 1999 

(about a year before the end of the Clinton bull market).10  Two months gives us a span of over 

forty daily observations; this does not appear to stretch the credibility of our assumption of 

constant asset-specific effects excessively, while still allowing us to test financial market 

integration for an interesting span of data.  We see no reason why higher-frequency data cannot 

be used.11 

 Our data set is drawn from the “US Pricing” database provided by Thomson Analytics.  

We use closing rates for the first (in terms of ticker symbol) one hundred firms from the S&P 

500 that did not go ex-dividend during the months in question.12  The absence of dividend 
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payments allows us to set j
t

j
t px 11 ++ = ; we choose a hundred firms since we split the data set in 

two to test for integration and think that fifty firm provides a reasonable cross-section.13 

Our sample period consists of 43 days.  Since we lose the first and last observations 

because of lags )( 1
j

tp −  and leads )( 1
j

tp + , we are left with a total of 4100 observations in our panel 

data set (100 firms x 41 days).  Our data has been checked for transcription errors both visually 

and with random crosschecking. 

We begin by using data from the first 50 firms to estimate discount rates (i.e., estimates 

of )](/1[ 1+≡ ttt dEδ ).  We graph our estimated deltas along with a plus/minus two standard error 

confidence interval in Figure 1. 

The expected discount rates seem reasonable.  The estimates of delta are close to unity 

(and are never significantly different at standard confidence levels), with relatively tight 

confidence intervals.14  It is interesting to note that they vary considerably over time, consistent 

with the thrust of Hansen and Jagannathan (1991).  The hypothesis of constant delta is rejected at 

any reasonable significance level.15 

We are less interested in {ß}= },{ 10 ββ , coefficients that are nuisances for our purposes.  

Still, we note in passing that the }{ 0β coefficients are negative while }{ 1β  estimates are positive; 

both sets of coefficients are jointly significant but individually insignificant. 

 What we are really interested in is using our estimates to test for market integration.  One 

easy way to do this is to compare the delta estimates from the 50 firms graphed in figure 1 with 

those from a different set of S&P firms (but the same time period).  Figure 2 portrays the 

expected discount rates from Figure 1 along with those from another (mutually exclusive) set of 

50 S&P firms, again from April-May 1999; we also include the plus/minus two standard error 

confidence interval (the latter from the second set of firms). 
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Clearly the two sets of expected discount rates are close when examined day by day; the 

differences are individually insignificant at conventional levels.  It is also simple to test for joint 

equality of the two sets of deltas.  The log-likelihood of our estimate of (4) from the first set of 

fifty firms is 4192, while that from the second set of fifty firms is 4333.  When we pool across all 

hundred firms and estimate a single set of deltas, the log-likelihood is 8505.  Under the null 

hypothesis of market integration, the deltas should be equal.  With normally distributed residuals, 

twice the difference in the log-likelihoods is distributed as 2χ under the null with T degrees of 

freedom.  Since 2((4192+4333) - 8505) = 40 sits virtually at the median of the )41(2χ  

distribution (the p-value is .49), the null hypothesis that the S&P 500 stock market is integrated 

cannot be rejected during this period of time.  All this bolsters our confidence in the 

methodology.  This is especially true since the excess kurtosis commonly observed in daily 

returns probably makes our critical values (which rely on normality) quite conservative.  Further, 

it is standard in finance to examine portfolios of assets which have considerably less noise than 

individual assets, making our test even more demanding. 

 In passing, we note that the point estimates of our expected discount rates do not seem to 

depend very sensitively on the exact factor model, i.e., the parameterization of 

)/,( 111
j

t
j

ttt pxdCOV −++ .  We have re-estimated our model without our time-varying factor (i.e., 

setting }0{ 1 =β ) and also without our intercepts (i.e., setting }0{ 0 =β ).  Figure 3 portrays the 

expected discount rates for our default specification and both alternatives, generated from all one 

hundred S&P firms.  While the confidence intervals change across specification, the point 

estimates do not seem to vary either dramatically or systematically.  We stick with our default 

two-factor model since it is both more general than the alternatives, and delivers the widest 
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confidence intervals, making it more difficult for us to reject the hypothesis of market 

integration. 

We have redone our analysis for two other two-month periods in 1999: July-August and 

also October-November.  We have also repeated the analysis for the same three two-month 

periods in 2002; all results are presented in Table 1.  Two of the six sample periods seem to 

present only marginal evidence in favor of the null hypothesis of market integration, while the 

results for October-November 2002 are inconsistent with the null at all conventional significance 

levels.  While it appears that the hypothesis that the market for S&P 500 stocks is integrated can 

be rejected for at least one of our six sample periods, we try not to take these results too literally, 

for two reasons.  First, the residuals are unlikely to be normally distributed because of 

leptokurtosis.  Second, we are using individual stocks rather than the portfolios that most finance 

economists use.  Ongoing research indicates that bootstrapped results from portfolios of stocks 

leads one to conclude that the hypothesis of integration of the S&P cannot be rejected. 

Figure 5 portrays expected discount rates for the six different sample periods we 

examine, all estimated from 100 S&P firms.  The time-series volatility of delta is striking and 

wholly consistent with the spirit of Hansen-Jagannathan (1991). 

Using different factor models (that is, different models of for firm covariances 

)/,( 111
j

t
j

ttt pxdCOV −++ ) does not seem to change our results.  Appendix 1 has four sets of 

analogous results to those in Table 1, derived using four different factor models.  Our default 

model (of Table 1) is a two-factor model with a set of firm-specific intercepts {β0} and firm-

specific slopes for the square of the market return {β1}.  We have also examined: a) a one factor 

model with just {β0}; b) another one factor model with just {β1}; c) a two-factor model with 

{β0} and firm-specific slopes for the level of the market return, and d) a three factor model with 
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intercepts and firm-specific slopes for both the level and square of the market return.  No 

conclusions of substance are much affected by the precise choice of factor model.  We find this 

robustness reassuring.  Still, there is no reason why other factors (e.g., firm size) cannot be 

used.16 

 

6: Further Examples 

 Having illustrated our basic methodology in some depth, we now provide a series of 

other applications of our technique.  These are intended to illustrate the power and breadth of its 

potential use. 

 

Is the S&P Integrated with the NASDAQ? 

 Most large American stocks are traded on the floor of the New York Stock Exchange; 

many smaller stocks are traded electronically on the NASDAQ.  It is interesting to compare S&P 

500 stocks to the NASDAQ; we test whether S&P 500 equities are integrated with stocks traded 

on the NASDAQ.  To do this, we obtain NASDAQ data that are similar in style to those from the 

S&P 500 (they are closing rates, also obtained from the US Pricing database of Thomson 

Analytics).  Again, we use the first 100 (in terms of ticker symbol) firms that did not go ex-

dividend during the samples we examine. 

 

Are American and Canadian Stock Markets Integrated? 

 Canada and the United States are similar economies in a number of respects, and there 

are few barriers to flows of goods, services, or capital between them.  We find it interesting to 

ask if the Canadian stock market is integrated with its American counterpart.  To pursue this, we 
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use closing prices on equities from the Toronto Stock Exchange (TSE) 300, again obtained from 

Thomson Analytics.  We convert these prices in Canadian dollars into American dollars by using 

closing foreign exchange rates obtained from the Bank of Canada.17 

We have been unable to obtain a full set of 100 Canadian stocks for all 6 periods.  In fact 

we only have data for 63 firms for both 1999m4/5, and 1999m7/8, and 66 firms for 1999m10/11.  

Since the set of firms rises to 81, 82, and 83 for the three 2002 samples, we choose not to use 

1999 data for this example. 

 
 
Are American Stock and Bond Markets Integrated? 

Our methodology can be readily applied to financial markets beyond equity markets, and 

the most obvious candidates are bond markets.  In particular, it is interesting to ask if stock and 

bond markets are integrated in the sense that the expected discount rates are similar. 

We begin by using closing “clean market” prices on AAA class US government, and 

corporate bonds, taken from DataStream.  As always, we choose those that did not go ex-

dividend/coupon during the sample.  (Since we do not have a complete set of 100 AAA bonds 

for 1999 – we have only 92/92/53 bonds for the three samples – we again only use 2002 data for 

the bond examples.)  We also use similar data on A+ bonds (from corporations, financial 

institutions or governments), and BB+/BB bonds (often referred to as “junk bonds”).  It should 

be noted that the quality of the bond price quotes is questionable since some bond markets are 

illiquid. 
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Evidence 

 We present four different sorts of evidence on asset integration.  First, we present 

likelihood-ratio tests of the hypothesis of internal market integration, analogous to those of Table 

1.  These are presented in Tables 2, 4, 6, 8, and 10 for NASDAQ stocks, TSE stocks, AAA 

bonds, A+ bonds, and junk bonds respectively.  Second, we present likelihood-ratio tests of 

integration across asset markets.  Thus in Table 3 we test the integration of NASDAQ and S&P 

stocks; tables 5, 7, 9, and 11 are analogues that compare the S&P to the five other assets. 

 The evidence presented in tables 1 through 11 is purely statistical in the sense that we can 

reject the null hypothesis of asset integration, or not.  But rejection of the hypothesis of market 

integration may occur for different economic reasons.  There is a big difference between two sets 

of deltas that are similar in magnitude but sufficiently far apart to reject the null of integration 

under the assumption of normality, and two sets of deltas that are wildly different.  Since we are 

interested in interpreting our results, we present time-series plots of the expected discount rates 

derived from our six different assets (along with appropriate confidence intervals) in figures 6 

through 8.  Scatter-plots of expected discount rates are portrayed in figures 9 through 11. 

Finally, tables 12 through 17 present quantitative economic measures of the degree of 

market integration (DMI) using a number of different metrics for the “closeness” of the expected 

discount rates.  There are a number of ways of measuring the closeness of expected discount 

rates.  We have not yet settled on a single summary statistic, but provide a few different 

measures of the degree of market integration. 

 The first measure we choose is the mean absolute difference between the expected 

discount rates.  Thus for any two asset classes p and q, we compute ||)/1( q
t

p
ttT δδ −Σ .  

The second, closely related measure is based on the Grubel-Lloyd measure of intra-industry trade 
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and is )/(||2)/1( q
t

p
t

q
t

p
ttT δδδδ +−Σ .  For both measures, smaller values indicate closer 

integration; a value of zero indicates perfect integration.  The results for the three different 

samples in 2002 are available in Tables 12-14.  To interpret these numbers, notice that the entry 

in Table 12 relating S&P to TSE (below the diagonal) is .04. This is corresponds to a 4% daily 

interest rate differential, which is large compared to annualized interest rates. 

 We also use two measures borrowed from Brandt, Cochrane and Santa-Clara (2002), who 

examine international risk sharing.  In particular, we compute 

))](ln)(ln/()ln(ln[1 222 q
t

p
t

q
t

p
t δσδσδδσ +−− and ))]()(/()([1 222 q

t
p

t
q
t

p
t δσδσδδσ +−− . Results 

for the 2002 samples are available in Tables 15-17.  These measure have properties similar to 

those of correlations; the measures are unity when the expected discount rates are identical, zero 

when the expected discount rates are uncorrelated, and equal to minus one if e.g., 

q
t

p
t δδ lnln −= . 

 Finally we note that all four of our measures ignore sampling imprecision; that is we do 

not provide confidence intervals for any of the measures. 

 

Results 

 It is easy to summarize the results that we find beyond the S&P.  Without taking critical 

values too literally (because of leptokurtosis and the fact that we examine assets rather than 

portfolios), the null hypothesis of integration inside bond markets is rejected.  Sometimes the 

rejections are quite staggering in the sense of likelihood ratio statistics that exceed one thousand 

(when consistency with the null implies figures below sixty).  The evidence for integration 

across asset classes uniformly rejects the null hypothesis, usually in an overwhelming fashion.18  

A different interpretation is that we have found the cross-sectional analogue to Hansen-
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Jagannathan (1991); Hansen and Jagannathan find evidence of time-series dispersion in discount 

rates whereas we find evidence of cross-sectional dispersion in expected discount rates. 

 The expected discount rates portrayed in figures 6 through 8 indicate that deltas for 

different asset classes are usually volatile on a time series basis.  But they often differ across 

asset classes.  We can see this clearly by focusing on April-May 2002, a sample of special 

interest since it is only for this sample that the hypothesis of market integration cannot be 

rejected for the S&P (though it can for the five other assets).  There are a number of days when 

the expected discount rates of different asset classes are quite different.  For instance, day 28 

(May 8, 2002) in delta estimates of .78 (se of .06) from the S&P, 1.33 (.26) from the NASDAQ, 

.99 (.29) from AAA bonds, 1.09 (.24) from A+ bonds, and .55 (.07) from junk bonds.  These 

expected discount rates seem far apart in both statistical and economic senses. 

 The finding of economically significant difference in deltas is corroborated in Tables 12-

17, which tabulate four measures of the degree of market integration (DMI) for the different 

assets and sample periods.  Our measures of DMI vary dramatically from period to period, and 

there are no obvious groupings of assets that are consistently tightly integrated. 

 Of course, we have only examined six financial asset classes, and only for six periods of 

time; our results may not be general.  Still, we emphasize that the assets we examine are traded 

on apparently deep markets with few important frictions.  We find the nearly uniform lack of 

evidence of integration both reassuring (since it implies that our technique is powerful), and 

puzzling (since we do not understand why these markets are not integrated).  Much food for 

thought! 
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7: Looking Backward and Looking Forward 

In this paper, we hope to have made two contributions.  Most importantly, we presented a 

methodology for testing asset integration.  Rather than assume that the “risk-free” rate from 

short-term government treasury bills is the appropriate discount rate for stock and bond markets, 

we test this assumption by comparing estimated discount rate derived directly from asset price 

data.  Our technique can be easily implemented using standard data and econometric techniques, 

while being tightly based upon a standard general theoretical framework.  It has demonstrable 

empirical power to estimate expected discount rates – the estimated inverse of the marginal rate 

of intertemporal substitution – with precision.  In fact, we have been able to reject the hypothesis 

of equal expected discount rates (and thus market integration) for a number of different financial 

markets.  The assets we consider include the S&P 500, the NASDAQ, the TSE, and a number of 

American bond markets; none have any obvious substantial trade frictions.  We are thus 

somewhat perplexed by our second contribution, a general lack of evidence supporting asset 

integration across markets. 

We have chosen to interpret our finding as indicating a lack of integration; but our tests 

are conditional upon a model of asset covariances.  While we find the strength and robustness of 

our findings with respect to the exact covariance model reassuring, our implicit model makes us 

cautious in our conclusions.  While our technique has a number of strengths, it clearly does not 

resolve the issue of asset integration.  While we can reject the hypothesis of asset integration for 

certain interesting samples, our technique does not shed light on the economic cause(s) for these 

rejections.  Do asset markets seem to be segmented because of artificial barriers (e.g., capital 

controls or taxes), asymmetric information, or some other phenomena?  This remains an 

interesting topic for future work. 
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 A number of easy extensions occur to us immediately.  It would be interesting to pursue 

both higher- and lower-frequency approaches, to see if there is more evidence of market 

integration within say individual days, or across decades, and whether market integration is 

growing.  It would also be interesting to examine asset integration before and after periods of 

extreme financial turbulence.  We would also like to group assets into portfolios (as is the norm 

in the finance profession), and check for kurtosis explicitly.  We plan to pursue these topics in 

future work. 
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Log Likelihoods April-May 1999 July-Aug. 1999 Oct.-Nov. 1999 
First 50 Firms  4192 4819 4191 
Second 50 Firms  4333 4899 4358 
All 100 Firms  8505 9687 8526 
Test Statistic (df) P-value 40 (41) .49 62 (42) .98 46 (41) .73 
 April-May 2002 July-Aug. 2002 Oct.-Nov. 2002 
First 50 Firms  5091 4108 3794 
Second 50 Firms  5130 4326 4072 
All 100 Firms  10197 8403 7825 
Test Statistic (df) P-value 48 (43) .72 62 (43) .97 82 (42) 1.00 
Table 1: Tests of Market Integration inside the S&P 500, Two-Factor Model 
 
 
Log Likelihoods April-May 1999 July-Aug. 1999 Oct.-Nov. 1999 
First 50 Firms  3343 3646 2048 
Second 50 Firms 3354 3808 3415 
All 100 Firms  6676 7424 4999 
Test Statistic (df) P-value 42 (41) .57 60 (42) .96 928 (41) 1.00 
 April-May 2002 July-Aug. 2002 Oct.-Nov. 2002 
First 50 Firms  3747 3427 3023 
Second 50 Firms  4169 3085 3045 
All 100 Firms  7848 6457 6032 
Test Statistic (df) P-value 136 (43) 1.00 110 (43) 1.00 72 (42) .997 
Table 2: Tests of Market Integration inside the NASDAQ, Two-Factor Model 
 
 
Log Likelihoods April-May 1999 July-Aug. 1999 Oct.-Nov. 1999 
100 S&P Firms  8505 9687 8526 
100 NASDAQ Firms  6676 7424 4999 
Combined 14,715 16,483 12,084 
Test Statistic (df) P-value 932 (41) 1.00 1256 (42) 1.00 2882 (41) 1.00 
 April-May 2002 July-Aug. 2002 Oct.-Nov. 2002 
100 S&P Firms  10197 8403 7825 
100 NASDAQ Firms  7848 6457 6032 
Combined 17,387 14,323 13,368 
Test Statistic (df) P-value 1316 (43) 1.00 1074 (43) 1.00 978 (42) 1.00 
Table 3: Tests for Market Integration between S&P 500 and NASDAQ, Two-Factor Model 
 
 
Log Likelihoods April-May 2002 July-Aug. 2002 Oct.-Nov. 2002 
First 50 Firms  4588 4224 4012 
Second 50 Firms  3253 2991 2994 
All 100 Firms  7740 7156 6919 
Test Statistic (df) P-value 202 (43) 1.00 118 (43) 1.00 174 (42) 1.00 
Table 4: Tests of Market Integration inside the TSE, Two-Factor Model 



 25

 
Log Likelihoods April-May 2002 July-Aug. 2002 Oct.-Nov. 2002 
100 S&P Firms  10197 8403 7825 
100 TSE Firms  7740 7156 6919 
Combined 17,661 15,294 14,573 
Test Statistic (df) P-value 552 (43) 1.00 530 (43) 1.00 342 (42) 1.00 
Table 5: Tests for Market Integration between S&P 500 and TSE, Two-Factor Model 
 
 
Log Likelihoods April-May 2002 July-Aug. 2002 Oct.-Nov. 2002 
First 50 AAA Bonds  9220 7245 7893 
Second 50 AAA Bonds  10,468 8908 8626 
All 100 AAA Bonds  19,113 15,518 16,294 
Test Statistic (df) P-value 1150 (43) 1.00 1270 (43) 1.00 450 (42) 1.00 
Table 6: Tests of Market Integration inside AAA Bonds, Two-Factor Model 
 
 
Log Likelihoods April-May 2002 July-Aug. 2002 Oct.-Nov. 2002 
100 S&P Firms  10197 8403 7825 
100 AAA Bonds  19,113 15,518 16,294 
Combined 22,484 18,557 17,556 
Test Statistic (df) P-value 14,000 (43) 1.00 5000 (43) 1.00 13,000 (42) 1.00 
Table 7: Tests for Market Integration between S&P and AAA Bonds, Two-Factor Model 
 
 
Log Likelihoods April-May 2002 July-Aug. 2002 Oct.-Nov. 2002 
First 50 A+ Bonds  8771 7341 6770 
Second 50 A+ Bonds  9563 8249 8571 
All 100 A+ Bonds  18,158 15,269 14,612 
Test Statistic (df) P-value 352 (43) 1.00 642 (43) 1.00 1458 (42) 1.00 
Table 8: Tests of Market Integration inside A+ Bonds, Two-Factor Model 
 
 
Log Likelihoods April-May 2002 July-Aug. 2002 Oct.-Nov. 2002 
100 S&P Firms  10197 8403 7825 
100 A+ Bonds  18,158 15,269 14,612 
Combined 22,497 18,525 17,520 
Test Statistic (df) P-value 12,000 (43) 1.00 10,000 (43) 1.00 10,000 (42) 1.00 
Table 9: Tests for Market Integration between S&P and A+ Bonds, Two-Factor Model 
 
 
Log Likelihoods April-May 2002 July-Aug. 2002 Oct.-Nov. 2002 
First 50 Junk Bonds  6731 5934 6481 
Second 50 Junk Bonds  7613 6098 6522 
All 100 Junk Bonds  14,091 11,981 12,975 
Test Statistic (df) P-value 506 (43) 1.00 102 (43) 1.00 56 (42) .93 
Table 10: Tests of Market Integration inside Junk Bonds, Two-Factor Model 
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Log Likelihoods April-May 2002 July-Aug. 2002 Oct.-Nov. 2002 
100 S&P Firms  10197 8403 7825 
100 Junk Bonds  14,091 11,981 12,975 
Combined 20,467 18,181 17,485 
Test Statistic (df) P-value 7,600 (43) 1.00 4400 (43) 1.00 6,600 (42) 1.00 
Table 11: Tests for Market Integration between S&P and Junk Bonds, Two-Factor Model 
 
 

 S&P 500 NASDAQ TSE AAA Bonds  A+ Bonds  Junk Bonds  
S&P 500 - .07 .04 .19 .06 .17 
NASDAQ .06 - .09 .15 .10 .23 

TSE .04 .08 - .23 .03 .15 
AAA Bonds  .16 .13 .19 - .24 .35 

A+ Bonds  .06 .09 .03 .21 - .15 
Junk Bonds  .17 .23 .15 .33 .15 - 

Table 12: Degree of Market Integration, April-May 2002 
Mean Absolute Difference of Deltas below diagonal; Grubel-Lloyd Measure above diagonal 
 
 

 S&P 500 NASDAQ TSE AAA Bonds  A+ Bonds  Junk Bonds  
S&P 500 - .13 .05 .05 .05 .07 
NASDAQ .12 - .12 .11 .15 .17 

TSE .05 .11 - .04 .04 .05 
AAA Bonds  .05 .10 .03 - .03 .05 

A+ Bonds  .05 .13 .04 .03 - .02 
Junk Bonds  .07 .16 .05 .05 .02 - 

Table 13: Degree of Market Integration, July-Aug. 2002 
Mean Absolute Difference of Deltas below diagonal; Grubel-Lloyd Measure above diagonal 
 
 

 S&P 500 NASDAQ TSE AAA Bonds  A+ Bonds  Junk Bonds  
S&P 500 - .09 .07 .10 .17 .04 
NASDAQ .08 - .14 .11 .18 .10 

TSE .07 .13 - .09 .13 .06 
AAA Bonds  .09 .10 .08 - .11 .07 

A+ Bonds  .15 .17 .12 .10 - .15 
Junk Bonds  .04 .09 .06 .06 .13 - 

Table 14: Degree of Market Integration, Oct.-Nov. 2002 
Mean Absolute Difference of Deltas below diagonal; Grubel-Lloyd Measure above diagonal 
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 S&P 500 NASDAQ TSE AAA Bonds  A+ Bonds  Junk Bonds  

S&P 500 - -.58 .57 -.65 -.59 .23 
NASDAQ -.67 - -.22 .74 .45 -.59 

TSE .55 -.24 - -.26 -.29 .04 
AAA Bonds  -.64 .80 -.23 - .81 -.52 

A+ Bonds  -.56 .46 -.29 .72 - -.29 
Junk Bonds  .27 -.59 .06 -.58 -.27 - 

Table 15: Degree of Market Integration, April-May 2002 
Brandt et al measure in logs below diagonal; in levels above diagonal 
 
 

 S&P 500 NASDAQ TSE AAA Bonds  A+ Bonds  Junk Bonds  
S&P 500 - -.09 -.20 .10 .07 .08 
NASDAQ -.10 - .52 -.14 -.17 -.11 

TSE -.21 .54 - -.07 -.04 -.01 
AAA Bonds  .10 -.15 -.06 - .96 .96 

A+ Bonds  .07 -.18 -.04 .95 - .99 
Junk Bonds  .08 -.12 .00 .95 .99 - 

Table 16: Degree of Market Integration, July-Aug. 2002 
Brandt et al measure in logs below diagonal; in levels above diagonal 
 
 

 S&P 500 NASDAQ TSE AAA Bonds  A+ Bonds  Junk Bonds  
S&P 500 - .53 -.67 .58 -.59 .59 
NASDAQ .51 - -.52 .38 -.47 .33 

TSE -.68 -.49 - -.57 .57 .-.53 
AAA Bonds  .60 .40 -.59 - -.91 .98 

A+ Bonds  -.60 -.47 .55 -.95 - -.85 
Junk Bonds  .61 .33 -.55 .97 -.87 - 

Table 17: Degree of Market Integration, Oct.-Nov. 2002 
Brandt et al measure in logs below diagonal; in levels above diagonal  
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Figure 1: Expected Discount Rates from Fifty S&P 500 Firms, April-May 1999 
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Figure 2: Expected Discount Rates from Two Sets of S&P 500 Firms, April-May 1999 
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Figure 3: Deltas from Different Factor Models, 100 S&P Firms, April-May 1999 
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Figure 4: Expected Discount Rates from Different Sets of S&P 500 Firms, Oct-Nov 2002 
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Figure 5: Expected Discount Rates from Sets of 100 S&P 500 Firms, 
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Figure 6: Expected Discount Rates from Different Assets, 2 Factor Model, April-May 2002 
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Figure 7: Expected Discount Rates from Different Assets, 2 Factor Model, July-Aug. 2002 
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Figure 8: Expected Discount Rates from Different Assets, 2 Factor Model, Oct.-Nov. 2002 
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Figure 9: Expected Discount Rates from Different Assets, 2 Factor Model, April-May 2002 
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Figure 10: Expected Discount Rates from Different Assets, 2 Factor Model, July-Aug. 2002 
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Figure 11: Expected Discount Rates from Different Assets, 2 Factor Model, Oct.-Nov. 2002 
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Appendix 1: Impact of Different Factor Models 
Log-Likelihood Tests of Market Integration from the S&P 500 
 
Log Likelihoods April-May 1999 July-Aug. 1999 Oct.-Nov. 1999 
First 50 Firms 4139 4793 4171 
Second 50 Firms 4271 4867 4334 
All 100 Firms 8393 9631 8481 
Test Statistic (df) P-value 34 (41) .23 58 (42) .95 48 (41) .79 
 April-May 2002 July-Aug. 2002 Oct.-Nov. 2002 
First 50 Firms 5069 4048 3763 
Second 50 Firms 5110 4279 4039 
All 100 Firms 10,155 8295 7762 
Test Statistic (df) P-value 48 (43) .72 64 (43) .98 80 (42) 1.00 

Table A1a: One Factor Model: Only Firm Intercepts }{ 0β  

 
Log Likelihoods April-May 1999 July-Aug. 1999 Oct.-Nov. 1999 
First 50 Firms 4150 4799 4170 
Second 50 Firms 4296 4872 4330 
All 100 Firms 8426 9640 8477 
Test Statistic (df) P-value 40 (41) .49 62 (42) .98 46 (41) .73 
 April-May 2002 July-Aug. 2002 Oct.-Nov. 2002 
First 50 Firms 5070 4078 3755 
Second 50 Firms 5099 4306 4016 
All 100 Firms 10146 8353 7734 
Test Statistic (df) P-value 46 (43) .65 62 (43) .97 74 (42) .997 

Table A1b: One Factor Model: Only Firm Slopes }{ 1β  

 
Log Likelihoods April-May 1999 July-Aug. 1999 Oct.-Nov. 1999 
First 50 Firms 4181 4832 4203 
Second 50 Firms 4325 4893 4357 
All 100 Firms 8485 9695 8539 
Test Statistic (df) P-value 42 (41) .57 60 (42) .96 42 (41) .57 
 April-May 2002 July-Aug. 2002 Oct.-Nov. 2002 
First 50 Firms 5090 4109 3796 
Second 50 Firms 5136 4343 4072 
All 100 Firms 10,203 8417 7827 
Test Statistic (df) P-value 46 (43) .65 70 (43) .99 82 (42) 1.00 

Table A1c: Two-factor Model: Firm- Intercepts }{ 0β , and slopes with level of market return 

 
Log Likelihoods April-May 1999 July-Aug. 1999 Oct.-Nov. 1999 
First 50 Firms 4235 4858 4224 
Second 50 Firms 4375 4925 4386 
All 100 Firms 8588 9751 8589 
Test Statistic (df) P-value 44 (41) .65 64 (42) .98 42 (41) .57 
 April-May 2002 July-Aug. 2002 Oct.-Nov. 2002 
First 50 Firms 5118 4179 3845 
Second 50 Firms 5152 4375 4124 
All 100 Firms 10,245 8524 7928 
Test Statistic (df) P-value 50 (43) .78 60 (43) .96 82 (42) 1.00 

Table A1d: Three Factor Model: Firm- Intercepts }{ 0β , slopes with square }{ 1β and level of market return  
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Appendix 2: Two-Factor Models Estimated on One Month 
 
Log Likelihoods April 1999 July 1999 Oct. 1999 
First 50 Firms  1932 2461 2041 
Second 50 Firms  2030 2525 2193 
All 100 Firms  3948 4973 4216 
Test Statistic (df) P-value 28 (20) .89 26 (21) .79 36 (20) .98 
 April 2002 July 2002 Oct. 2002 
First 50 Firms  2578 1993 1805 
Second 50 Firms  2553 2044 2005 
All 100 Firms  5115 4021 3780 
Test Statistic (df) P-value 32 (21) .94 32 (21) .94 60 (21) 1.00 
Table A2a: Tests of Market Integration inside the S&P 500, Two-Factor Model 
 
 
Log Likelihoods April 1999 July 1999 Oct. 1999 
First 50 Firms  1581 1906 1622 
Second 50 Firms  1469 1998 1744 
All 100 Firms  3033 3888 3347 
Test Statistic (df) P-value 34 (20) .97 32 (21) .94 38 (20) .99 
 April 2002 July 2002 Oct. 2002 
First 50 Firms  1824 1687 1568 
Second 50 Firms  2193 1591 1423 
All 100 Firms  3939 3254 2969 
Test Statistic (df) P-value 156 (21) 1.00 48 (21) .999 44 (21) .998 
Table A2b: Tests of Market Integration inside the NASDAQ, Two-Factor Model 
 
 
Log Likelihoods April 1999 July 1999 Oct. 1999 
100 S&P Firms  3948 4973 4216 
100 NASDAQ Firms  3033 3888 3347 
Combined 6730 8569 7350 
Test Statistic (df) P-value 502 (20) 1.00 584 (21) 1.00 426 (20) 1.00 
 April 2002 July 2002 Oct. 2002 
100 S&P Firms  5115 4021 3780 
100 NASDAQ Firms  3939 3254 2969 
Combined 8707 7062 6533 
Test Statistic (df) P-value 694 (21) 1.00 426 (21) 1.00 432 (21) 1.00 
Table A2c: Market Integration between S&P 500 and NASDAQ, Two-Factor Model 



 39

Endnotes 
 
                                                 
1  Any liquidity or other services accruing to the asset holders are also included in x, though in this paper we ignore 
such phenomena. 
2  To our knowledge this Euler equation is present in all existing equilibrium asset pricing models. 
3  Note that 1+td  is a real discount rate – one that discounts the real payoff , j

tx 1+ , and turns it into a real price j
tp . 

The units of the discount rate depend on the units of the asset payoff, and the units used for the asset price.  If next 
period’s payoff had been in American dollars, then we would have used an American dollar discount rate.  Had the 
payoff been in Canadian dollars, we would have used a Canadian dollar discount rate.  Changes in discount rate 
units to say American dollars are made by inflating the payoff and current period asset price by the appropriate 
American price levels for periods t+1 and t respectively, and then undoing that operation in the discount rate – as 
below: 
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, an American dollar discount rate.  In practice, at high frequencies we assume Qt=Qt+1. 

We maintain the 1+td  notation for all discounting.  In this paper, all prices and payoffs will be quoted in or 

converted to U.S.-dollar units. 
4  Such equations are usually deflated by 

j
tp  in practice. 

5  Without any normalization, the covariances are proportional to prices, so that with constant covariances, we end 
up with a term proportional to the price in the residual.  That is, dividing by the lagged price makes the residual 
better behaved.  We have experimented with other normalizations, such as the average level of prices at time t tp , 

and found similar results. 
6  We prefer not to use a concentrated maximum likelihood estimator, since we would rather not take a stand on the 
distribution of ε.  In passing, we have experimented some with starting values, and never found local maxima to be a 
problem in practice. 
7  We impose no constraints on δ so that it need not be e.g ., greater than unity; we see no reason why constraints 
could not be added in future work.  
8  We use the Toronto Stock Exchange Index for Canadian Stocks and the Lehman Brothers bond index for all 
bonds. 
9  This is especially true when we do not include many time-varying factors. 
10  We choose these months to avoid January (and its effect), February (a short month), and March (a quarter-ending 
month), but test for sample sensitivity extensively below. 
11  For instance, we could use data at five-minute intervals for a day, making our assumption of constant asset-
specific effects even more plausible; but the question of whether financial markets are integrated over hours (not 
weeks) is less interesting to us. 
12  The New York Stock Exchange closes at 4:00pm daily, as does the Toronto stock exchange in the same time 
zone, a fact we use later on.  See The Compact Handbook of World Stock, Derivative and Commodity Exchanges, 
Year 2001.  Note that Thomson provides price quotes for holidays that we use, in part to ensure consistent samples 
across markets. 
13  We include data from firms like: Ace Ltd., Transocean Inc., ADC Telecommunications, AES Corp., AMR Corp., 
AT&T Corp., Adobe Sys Inc., AMD Inc., Air Prods. & Chems. Inc., and Allegheny Energy Inc. 
14  In practice, there is little cross-sectional dependence left in our residuals (the time dummies seem to pick it all 
up); a regression of the residuals on a comprehensive set of time dummies yields an R2 of essentially zero.  Still, one 
could always use GMM in the event of encountering such problems.  We have experimented with GMM, and it 
seems typically to delivers results almost identical to those of least squares in practice.  We have also experimented 
with different standard errors.  Conventional asymptotic standard errors tend to be a little smaller than the Newey-
West ones, which are similar to bootstrapped ones.  For instance, consider the one-factor model estimated for the 
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100 S&P firms in April-May 1999.  Conventional standard errors average .017 (with little variation), Newey-West 
standard errors average .022, and bootstrapped standard errors average .023.  Also, the bootstrap shows only very 
trivial bias in our delta estimates. 
15  As shown in Table 1, the log likelihood of our equation estimated on 50 S&P firms is 4192.  In April-May 1999, 
the US 3-month treasury bill rate averaged 4.4%, while the US 30-year treasury bond averaged 5.93%; these are 
daily rates of 1.00017 and 1.00023 respectively.  If delta had been constant at the average riskless interest rate, it 
might have been expected to average between these values.  Yet the log likelihood for the default equation estimated 
with a constant of this magnitude in place of the deltas is only 4061.  Under the null hypothesis of deltas that are 
constant and equal to the inverse of the riskless interest rate, 2*(4192-4061) is distributed as a chi-square with 41 
degrees of freedom, grossly inconsistent with the null.  When we use all 100 firms, the analogue is 2*(8505-8281), 
again grossly inconsistent with the null. 
16  One could also split the assets by e.g., size, beta, or something else while testing for integration within a market. 
17  They are available from the “Rates and Statistics” section of www.bankofcanada.ca.  The close rate is updated at 
about 4:30pm, some 30 minutes later than both the TSE and NYSE close.  This adds some measurement error which 
is probably small, since a) the C$/$ rate is stable during this period; and b) the C$/$ market tends to be inactive from 
4:00pm to 4:30pm EST/EDST.  There are a few days when the C$/$ exchange market is closed in Canada; in this 
case we substitute closing rates from the Financial Times. 
18  Our rejections of integration do not seem to stem from assuming that our asset-specific effects are constant for a 
two-month sample.  In appendix 2, we present the analogues to Tables 1 through 3, but computed only with the first-
half of the (two-month) sample.  The results from the one-month sample are quite similar to those from the two-
month sample. 


