
Derivation of equations (8) through (12) 
 
 In this note, we derive equations (8) through (12).  Equation (8) concerns the 
optimal allocation of a given level of overall lending, iL , between countries a and b. 
Given overall lending, by (3) it can be seen that 1iC  is invariant to the allocation decision. 
As such, the optimal allocation satisfies  

 
( ) ( )2 2

a b

E C E C
L L

∂ ∂
=

∂ ∂
 

 
By (4) and (5): 

( ) ( ) ( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ){ } ( )

*

*

*

*

2 2 1

1

ia

ia

ib

ib

i i ia ia ia

ib ib ib

E C Y E T f d E T D f d

E T f d E T D f d

ε ε

ε ε

ε ε

ε ε

θ γ ε ε ε γ ε ε ε

θ γ ε ε ε γ ε ε ε

= + − + + + −      

+ − + + + −      

∫ ∫

∫ ∫
 

  
We take overall lending as given 

 ia ibL L L+ =  
By the creditor zero profit conditions in (7)  
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Substituting and simplifying 
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 Differentiating ( )2iE C  with respect to iaL  and ibL  yields 
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Combining (6) and (7) yields 
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Totally differentiating yields the first-order Taylor approximation 
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for ,j a b= . This is equation (11). 

In the relevant range this term will be positive, implying that the probability of 

default is increasing in borrowing levels from that country.  

Subsitituting 
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So the first-order condition satisfies 
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From above 
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This is equation (8).  We next turn to the impact of an increase in ( )iaE T  
(equation (9)). Holding overall lending constant 
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Differentiating with respect to ( )iaE T  yields 
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Totally differentiating the first-order condition with respect to iaL  and ( )iaE T  

then yields (9) 
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Where the denominator can be signed as negative by the debtor’s second-order condition. 
 
 We next turn to the overall borrowing decision. Differentiating (2) with respect to 
L  yields 
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The debtor’s first-order condition satisfies 
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Totally differentiating with respect to L  and ( )iaE T  yields 
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Since the denominator can be signed as negative from the debtor’s second-order 
condition, the sign will be that of the numerator.  Differentiating ( )2iE C  with respect to L  yields 
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 From the first-order condition above 
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The first-order condition then satisfies 
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Differentiating with respect to ( )iaE T  then yields 
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From the analysis above * / 0ia iaLε∂ ∂ >  in the relevant range.  Differentiating this 

term with respect to ( )iaE T  yields  
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It follows that ( )2 * / 0ia ia iaL E Tε∂ ∂ ∂ < . 
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since the denominator can be signed as negative by the debtor’s second-order condition. 
This is equation (12). 


