Derivation of equations (8) through (12)

In this note, we derive equations (8) through (12). Equation (8) concerns the optimal allocation of a given level of overall lending, \bar{L}_{i}, between countries a and b.
Given overall lending, by (3) it can be seen that $C_{i 1}$ is invariant to the allocation decision. As such, the optimal allocation satisfies

$$
\frac{\partial E\left(C_{2}\right)}{\partial L_{a}}=\frac{\partial E\left(C_{2}\right)}{\partial L_{b}}
$$

By (4) and (5):

$$
\begin{aligned}
& E\left(C_{i 2}\right)=Y_{i 2}+\int_{\underline{\varepsilon}}^{\varepsilon_{i}^{*}}(1-\theta) \gamma\left[E\left(T_{i a}\right)+\varepsilon\right] f(\varepsilon) d \varepsilon+\int_{\varepsilon_{i a}^{*}}^{\bar{\varepsilon}}\left\{\gamma\left[E\left(T_{i a}\right)+\varepsilon\right]-D_{i a}\right\} f(\varepsilon) d \varepsilon \\
& +\int_{\underline{\varepsilon}}^{\varepsilon_{i b}^{*}}(1-\theta) \gamma\left[E\left(T_{i b}\right)+\varepsilon\right] f(\varepsilon) d \varepsilon+\int_{\varepsilon_{b}^{*}}^{\bar{\varepsilon}}\left\{\gamma\left[E\left(T_{i b}\right)+\varepsilon\right]-D_{i b}\right\} f(\varepsilon) d \varepsilon
\end{aligned}
$$

We take overall lending as given

$$
L_{i a}+L_{i b}=\bar{L}
$$

By the creditor zero profit conditions in (7)

$$
\left[1-F\left(\varepsilon_{i b}^{*}\right)\right] D_{i b}=r \bar{L}-\left[1-F\left(\varepsilon_{i a}^{*}\right)\right] D_{i a}
$$

Substituting and simplifying
$E\left(C_{i 2}\right)=Y_{i 2}+\gamma\left[E\left(T_{i a}\right)+E\left(T_{i b}\right)\right]-r \bar{L}-\int_{\underline{\varepsilon}}^{\varepsilon_{i a}^{*}} \theta \gamma\left[E\left(T_{i a}\right)+\varepsilon\right] f(\varepsilon) d \varepsilon-\int_{\underline{\varepsilon}}^{\varepsilon_{i j}^{*}} \theta \gamma\left[E\left(T_{i b}\right)+\varepsilon\right] f(\varepsilon) d \varepsilon$
Differentiating $E\left(C_{i 2}\right)$ with respect to $L_{i a}$ and $L_{i b}$ yields

$$
\frac{\partial E\left(C_{i 2}\right)}{\partial L_{i a}}=-\theta \gamma\left[E\left(T_{i a}\right)+\varepsilon_{i a}^{*}\right] f\left(\varepsilon_{i a}^{*}\right) \frac{\partial \varepsilon_{i a}^{*}}{\partial L_{i a}}
$$

and

$$
\frac{\partial E\left(C_{i 2}\right)}{\partial L_{i b}}=-\theta \gamma\left[E\left(T_{i b}\right)+\varepsilon_{i b}^{*}\right] f\left(\varepsilon_{i b}^{*}\right) \frac{\partial \varepsilon_{i b}^{*}}{\partial L_{i b}}
$$

Combining (6) and (7) yields

$$
\left[1-F\left(\varepsilon_{i j}^{*}\right)\right] \theta \gamma\left[E\left(T_{i j}\right)+\varepsilon_{i j}^{*}\right]=r L_{i j}
$$

Totally differentiating yields the first-order Taylor approximation

$$
\frac{d \varepsilon_{i j}^{*}}{d L_{i j}}=\frac{r}{\theta \gamma\left\{\left[1-F\left(\varepsilon_{i j}^{*}\right)\right]-f\left(\varepsilon_{i j}^{*}\right)\left[E\left(T_{i j}\right)+\varepsilon_{i j}^{*}\right]\right\}}
$$

for $j=a, b$. This is equation (11).
In the relevant range this term will be positive, implying that the probability of default is increasing in borrowing levels from that country.

Subsitituting

$$
\frac{\partial E\left(C_{i 2}\right)}{\partial L_{i a}}=-\frac{r\left[E\left(T_{i a}\right)+\varepsilon_{i a}^{*}\right] f\left(\varepsilon_{i a}^{*}\right)}{\left[1-F\left(\varepsilon_{i a}^{*}\right)\right]-f\left(\varepsilon_{i a}^{*}\right)\left[E\left(T_{i a}\right)+\varepsilon_{i a}^{*}\right]}
$$

and

$$
\frac{\partial E\left(C_{i 2}\right)}{\partial L_{i b}}=-\frac{r\left[E\left(T_{i b}\right)+\varepsilon_{i b}^{*}\right] f\left(\varepsilon_{i b}^{*}\right)}{\left[1-F\left(\varepsilon_{i b}^{*}\right)\right]-f\left(\varepsilon_{i b}^{*}\right)\left[E\left(T_{i b}\right)+\varepsilon_{i b}^{*}\right]}
$$

So the first-order condition satisfies

$$
\left[E\left(T_{i a}\right)+\varepsilon_{i a}^{*}\right] f\left(\varepsilon_{i a}^{*}\right)\left[1-F\left(\varepsilon_{i b}^{*}\right)\right]=\left[E\left(T_{i b}\right)+\varepsilon_{i b}^{*}\right] f\left(\varepsilon_{i b}^{*}\right)\left[1-F\left(\varepsilon_{i a}^{*}\right)\right]
$$

From above

$$
\left[E\left(T_{i j}\right)+\varepsilon_{i j}^{*}\right] \theta \gamma\left[1-F\left(\varepsilon_{i j}^{*}\right)\right]=r L_{i j}
$$

Substituting

$$
\frac{L_{i a}}{L_{i b}}=\left(\frac{f\left(\varepsilon_{i b}^{*}\right)}{f\left(\varepsilon_{i a}^{*}\right)}\left[\frac{1-F\left(\varepsilon_{i a}^{*}\right)}{1-F\left(\varepsilon_{i b}^{*}\right)}\right]^{2}\right.
$$

This is equation (8). We next turn to the impact of an increase in $E\left(T_{i a}\right)$ (equation (9)). Holding overall lending constant

$$
\frac{\partial E\left(C_{i 2}\right)}{\partial L_{i a}}=-r\left\{\frac{\left[E\left(T_{i a}\right)+\varepsilon_{i a}^{*}\right] f\left(\varepsilon_{i a}^{*}\right)}{\left[1-F\left(\varepsilon_{i a}^{*}\right)\right]-f\left(\varepsilon_{i a}^{*}\right)\left[E\left(T_{i a}\right)+\varepsilon_{i a}^{*}\right]}+\frac{\left[E\left(T_{i b}\right)+\varepsilon_{i b}^{*}\right] f\left(\varepsilon_{i b}^{*}\right)}{\left[1-F\left(\varepsilon_{i b}^{*}\right)\right]-f\left(\varepsilon_{i b}^{*}\right)\left[E\left(T_{i b}\right)+\varepsilon_{i b}^{*}\right]}\right\}
$$

Differentiating with respect to $E\left(T_{i a}\right)$ yields

$$
\frac{\partial E\left(C_{i 2}\right)}{\partial L_{i a} \partial E\left(T_{i a}\right)}=\frac{r\left[E\left(T_{i a}\right)+\varepsilon_{i a}^{*}\right]\left\{f^{\prime}\left(\varepsilon_{i a}^{*}\right)\left[1-F\left(\varepsilon_{i a}^{*}\right)\right]+f\left(\varepsilon_{i a}^{*}\right)^{2}\right\}}{\left\{\left[1-F\left(\varepsilon_{i a}^{*}\right)\right]-f\left(\varepsilon_{i a}^{*}\right)\left[E\left(T_{i a}\right)+\varepsilon_{i a}^{*}\right]\right\}^{2}}>0
$$

Totally differentiating the first-order condition with respect to $L_{i a}$ and $E\left(T_{i a}\right)$ then yields (9)

$$
\frac{\partial L_{i a}}{\partial E\left(T_{i a}\right)}=-\frac{r\left[E\left(T_{i a}\right)+\varepsilon_{i a}^{*}\right]\left\{\left[1-F\left(\varepsilon_{i a}^{*}\right)\right] f^{\prime}\left(\varepsilon_{i a}^{*}\right)+f\left(\varepsilon_{i a}^{*}\right)^{2}\right\}}{\frac{\partial^{2} E\left(C_{i 2}\right)}{\partial L_{i a}{ }^{2}}\left\{\left[1-F\left(\varepsilon_{i a}^{*}\right)\right]-f\left(\varepsilon_{i a}^{*}\right)\left[E\left(T_{i a}\right)+\varepsilon_{i a}^{*}\right]\right\}^{2}}>0 .
$$

Where the denominator can be signed as negative by the debtor's second-order condition.
We next turn to the overall borrowing decision. Differentiating (2) with respect to \bar{L} yields

$$
\frac{\partial E\left(U_{i 2}\right)}{\partial \bar{L}}=U^{\prime}+\beta \frac{\partial E\left(C_{i 2}\right)}{\partial \bar{L}}
$$

The debtor's first-order condition satisfies

$$
U^{\prime}+\beta \frac{\partial E\left(C_{i 2}\right)}{\partial \bar{L}}=0
$$

Totally differentiating with respect to \bar{L} and $E\left(T_{i a}\right)$ yields

$$
\frac{\partial \bar{L}}{\partial E\left(T_{i a}\right)}=-\frac{\beta \frac{\partial^{2} E\left(C_{i 2}\right)}{\partial \bar{L} \partial E\left(T_{i a}\right)}}{U^{\prime \prime}+\beta \frac{\partial^{2} E\left(C_{i 2}\right)}{\partial \bar{L}^{2}}}
$$

Since the denominator can be signed as negative from the debtor's second-order condition, the sign will be that of the numerator. Differentiating $E\left(C_{i 2}\right)$ with respect to \bar{L} yields

$$
\frac{\partial E\left(C_{i 2}\right)}{\partial \bar{L}}=-r-\theta \gamma\left\{\left[E\left(T_{i a}\right)+\varepsilon_{i a}^{*}\right] f\left(\varepsilon_{i a}^{*}\right) \frac{\partial \varepsilon_{i a}^{*}}{\partial L_{i a}} \frac{\partial L_{i a}}{\partial \bar{L}}+\left[E\left(T_{i b}\right)+\varepsilon_{i b}^{*}\right] f\left(\varepsilon_{i b}^{*}\right) \frac{\partial \varepsilon_{i b}^{*}}{\partial L_{i b}} \frac{\partial L_{i b}}{\partial \bar{L}}\right\}
$$

From the first-order condition above

$$
\frac{\partial E\left(C_{i 2}\right)}{\partial \bar{L}}=-r-\theta \gamma\left\{\left[E\left(T_{i a}\right)+\varepsilon_{i a}^{*}\right] f\left(\varepsilon_{i a}^{*}\right) \frac{\partial \varepsilon_{i a}^{*}}{\partial L_{i a}}\right\}
$$

The first-order condition then satisfies

$$
U^{\prime}-\beta\left\{r+\theta \gamma\left\{\left[E\left(T_{i a}\right)+\varepsilon_{i a}^{*}\right] f\left(\varepsilon_{i a}^{*}\right) \frac{\partial \varepsilon_{i a}^{*}}{\partial L_{i a}}\right\}\right\}=0
$$

Differentiating with respect to $E\left(T_{i a}\right)$ then yields

$$
\frac{\partial^{2} E\left(C_{i 2}\right)}{\partial \bar{L} \partial E\left(T_{i a}\right)}=-\theta \gamma\left[E\left(T_{i a}\right)+\varepsilon_{i a}^{*}\right]\left[-f^{\prime}\left(\varepsilon_{i a}^{*}\right) \frac{\partial \varepsilon_{i a}^{*}}{\partial L_{i a}}+f\left(\varepsilon_{i a}^{*}\right) \frac{\partial^{2} \varepsilon_{i a}^{*}}{\partial L_{i a} \partial E\left(T_{i a}\right)}\right]
$$

From the analysis above $\partial \varepsilon_{i a}^{*} / \partial L_{i a}>0$ in the relevant range. Differentiating this term with respect to $E\left(T_{i a}\right)$ yields

$$
\frac{\partial^{2} \varepsilon_{i a}^{*}}{\partial L_{i a} \partial E\left(T_{i a}\right)}=-\frac{r\left\{f\left(\varepsilon_{i a}^{*}\right)+f^{\prime}\left(\varepsilon_{i a}^{*}\right)\left[E\left(T_{i a}\right)+\varepsilon_{i a}^{*}\right]\right\}}{\theta \gamma\left\{\left[1-F\left(\varepsilon_{i a}^{*}\right)\right]-f\left(\varepsilon_{i a}^{*}\right)\left[E\left(T_{i a}\right)+\varepsilon_{i a}^{*}\right]\right\}^{2}}<0
$$

It follows that $\partial^{2} \varepsilon_{i a}^{*} / \partial L_{i a} \partial E\left(T_{i a}\right)<0$.
Substituting

$$
\frac{\partial \bar{L}}{\partial E\left(T_{i a}\right)}=-\frac{\beta r\left[E\left(T_{i a}\right)+\varepsilon_{i a}^{*}\right]\left[f^{\prime}\left(\varepsilon_{i a}^{*}\right)\left[1-F\left(\varepsilon_{i a}^{*}\right)\right]+f\left(\varepsilon_{i a}^{*}\right)^{2}\right]}{\left[U^{\prime \prime}+\beta \frac{\partial^{2} E\left(C_{i 2}\right)}{\partial \bar{L}^{2}}\right]\left\{\left[1-F\left(\varepsilon_{i a}^{*}\right)\right]-f\left(\varepsilon_{i a}^{*}\right)\left[E\left(T_{i a}\right)+\varepsilon_{i a}^{*}\right]\right\}^{2}}>0
$$

since the denominator can be signed as negative by the debtor's second-order condition. This is equation (12).

