A Gravity Model of International Lending:

Trade, Default and Credit

Andrew K. Rose and Mark M. Spiegel

Key Idea: Mechanism to ensure Sovereign Debt Repayment
has implications for Lending Patterns

- Few penalties for sovereign default other than reduced
trade
- If trade is the penalty, then lending patterns should follow trade patterns

Theory

- Construct 3-country model of debt with 1 debtor, 2 creditors from countries with different trade patterns
- Penalty for default is proportional to trade
- Show lending is proportional to trade

Data Set

- Use annual panel data set of trade and lending
- 20 creditors, 149 debtors, 1986-1999
- Bank claims from BIS
o Rest from Glick-Rose

Methodology

- Estimate "gravity" model of lending:

$$
\ln \left(\mathrm{C}_{\mathrm{ijt}}\right)=\varphi \ln \left(\mathrm{X}_{\mathrm{ijt}}\right)+\beta \mathrm{Z}_{\mathrm{ijt}}+\varepsilon_{\mathrm{ijt}}
$$

where Z are gravity variables (distance, GDP, ...)

- IV critical because of simultaneity
- Use different instrumental variables from gravity model, especially geographic (landlocked status ...)

Table 1: OLS Estimates of Effect of Trade on Claims

	φ
Default	$.54(.04)$
Without controls	$.75(.02)$
Levels	. .0001
	$(.00003)$
Levels without controls	.0001
	$(.00003)$
1990	$.51(.05)$
1995	$.53(.07)$
Only industrial debtors	$.74(.04)$

Equation estimated is Claims $\mathrm{s}_{\mathrm{i}, \mathrm{t}}=\varphi \operatorname{Trade}_{\mathrm{i}, \mathrm{j}, \mathrm{t}}+\beta \mathrm{X}_{\mathrm{i}, \mathrm{j}, \mathrm{t}}+\varepsilon_{\mathrm{i}, \mathrm{j}, \mathrm{t}}$
Robust standard errors (clustered by country-pairs) recorded in parentheses.
Intercepts and year effects not recorded.

Table 2a: IV Estimates of Effect of Trade on Claims, Geographic Instruments

	φ
Default	$.41(.07)$
Without controls	$.50(.04)$
Levels	.00006
	$(.00001)$
Levels without controls	.00007
	$(.00002)$
1990	$.52(.10)$
1995	$.40(.10)$
Only industrial debtors	1.03
	$(.07)$

Equation estimated is Claims $\mathrm{s}_{\mathrm{i}, \mathrm{t}, \mathrm{t}}=\varphi \operatorname{Trade}_{\mathrm{i}, \mathrm{j}, \mathrm{t}}+\beta \mathrm{W}_{\mathrm{i}, \mathrm{j}, \mathrm{t}}+\varepsilon_{\mathrm{i}, \mathrm{j}, \mathrm{t}}$
Robust standard errors (clustered by country-pairs) recorded in parentheses.
Intercepts and year effects not recorded.
Instrumental variables for trade are: distance; land border; number landlocked; number island nations; log of area.

Table 2b: IV Estimates of Effect of Trade on Claims, Excludable Instruments

	φ
Default	$.80(.40)$
Without controls	$.83(.07)$
Levels	.00004
	$(.00001)$
Levels without controls	.00005
	$(.00001)$
1990	$.59(.37)$
1995	1.13
	$(.49)$
Only industrial debtors	$.79(.29)$

Equation estimated is Claims ${ }_{i, j, t}=\varphi$ Trade $_{\mathrm{i}, \mathrm{j}, \mathrm{t}}+\beta \mathrm{Z}_{\mathrm{i}, \mathrm{j}, \mathrm{t}}+\varepsilon_{\mathrm{i}, \mathrm{j}, \mathrm{t}}$
Robust standard errors (clustered by country-pairs) recorded in parentheses.
Intercepts and year effects not recorded.
Instrumental variables for trade are: common language; regional trade agreement; same nation.

Table 3: IV Estimates of Effect of Trade on Claims, Controlling for Total Claims/Debt

Control:	Total Claims	Total Debt
Default	$.40(.07)$	$.42(.07)$
Without controls	$.42(.04)$	$.27(.04)$
Levels	.00005 $(.000004)$.00006 $(.00002)$
Levels without controls	.00005 $(.000006)$.00006 $(.00002)$
1990	$.47(.10)$	$.56(.09)$
1995	$.37(.10)$	$.42(.10)$
Only industrial debtors	$.48(.23)$	$1.10(.20)$
OLS	$.29(.03)$	$.39(.02)$

Equation estimated is Claims $\mathrm{i}_{\mathrm{i}, \mathrm{t}}=\varphi$ Trade $_{\mathrm{i}, \mathrm{j}, \mathrm{t}}+\beta \mathrm{W}_{\mathrm{i}, \mathrm{j}, \mathrm{t}}+\varepsilon_{\mathrm{i}, \mathrm{j}, \mathrm{t}}$
Robust standard errors (clustered by country-pairs) recorded in parentheses.
Intercepts and year effects not recorded.
Instrumental variables for trade are: distance; land border; number landlocked; number island nations; log of area.

Table 4: IV Estimates of Effect of Trade Level on Claims, Panel Estimators

Estimator:	OLS, RE	OLS, FE	IV, RE
Default	$.31(.01)$	$.19(.02)$	$.52(.06)$
Without controls	$.38(.01)$	$.19(.01)$	$.52(.03)$
Levels	.00003	.00002	.00006
	$(.000001)$	$(.000001)$	$(.00001)$
Levels without controls	.00003	.00002	.00007
	$(.000001)$	$(.000001)$	$(.000003)$
Only industrial debtors	$.46(.06)$	$.28(.07)$	$.96(.19)$

Equation estimated is Claims $\mathrm{C}_{\mathrm{i}, \mathrm{j}, \mathrm{t}}=\varphi \operatorname{Trade}_{\mathrm{i}, \mathrm{j}, \mathrm{t}}+\beta \mathrm{W}_{\mathrm{i}, \mathrm{j}, \mathrm{t}}+\varepsilon_{\mathrm{i}, \mathrm{j}, \mathrm{t}}$
Robust standard errors (clustered by country-pairs) recorded in parentheses.
Intercepts and year effects not recorded.
Instrumental variables for trade are: distance; land border; number landlocked; number island nations; log of area.

