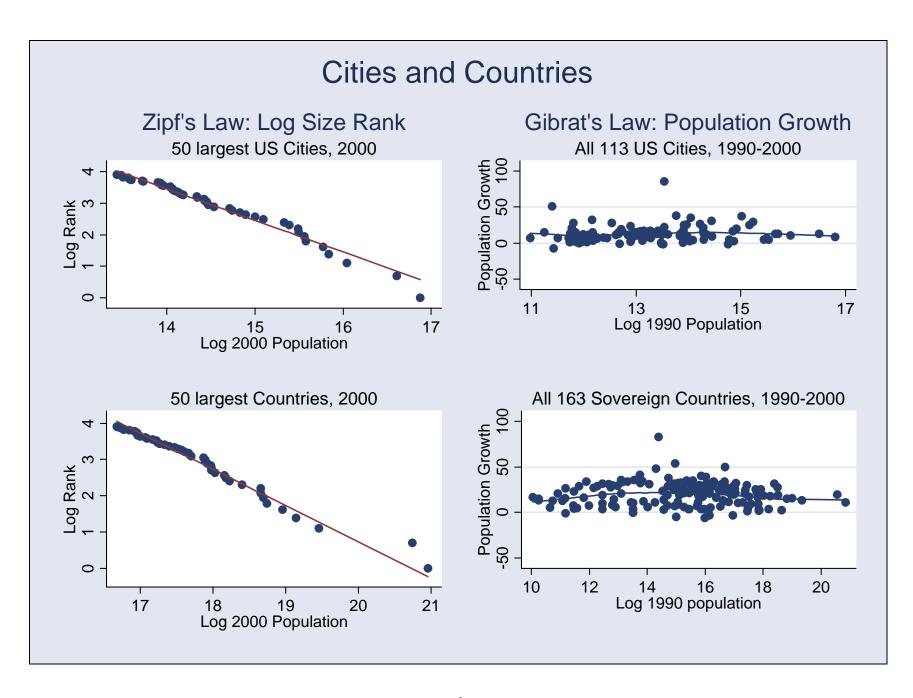
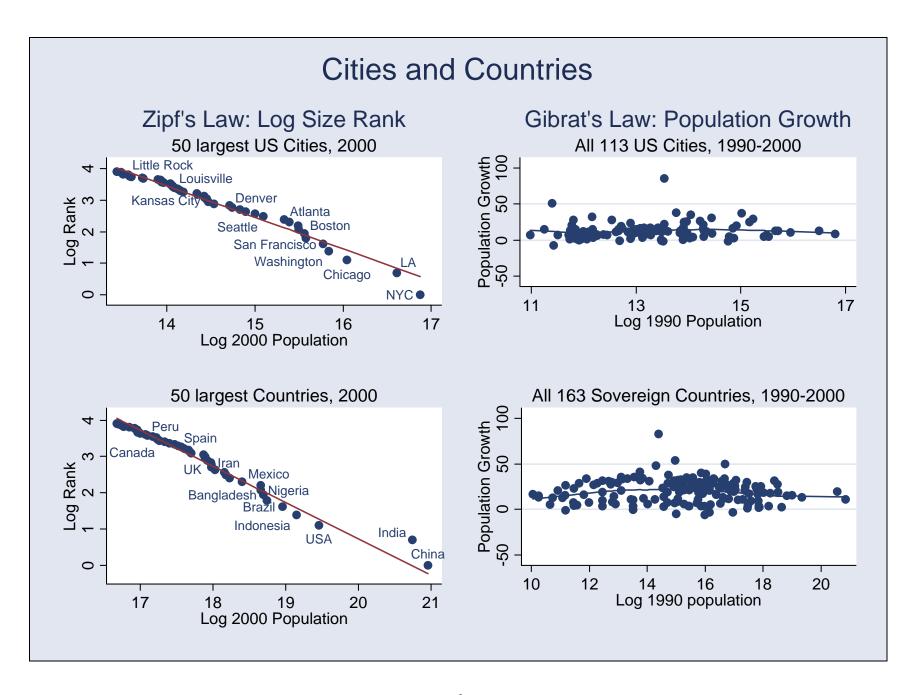
In Honor of John Quigley: Cities and Countries


Andrew K Rose
UC Berkeley, CEPR and NBER


Motivation

- Agglomeration: a key focus of urban economics, continuing interest of Quigley
- Cities are a basic unit of urban economics
- Countries are a basic unit of international economics
- There is no obvious reason why the distribution of one should look the distribution of the other

The Issue

• But they do!

I focus on two aspects of size distribution:

- 1) "Zipf's Law [for Cities]"
 - The rank (by size) of a city is almost perfectly inversely correlated with its size
- 2) "Gibrat's Law [for Cities]"
 - The growth of a city is basically independent of its size

- Both are well-known, widely documented, undisputed
- Both have prompted much theorizing

Zipf's Law [for Cities]

- o Rank cities by size: $S_1 > S_2 > ... > S_N$.
- o Zipf: P(Size>S) $\approx \alpha S^{-\beta}$ where: α a constant, $\beta \approx 1$
- Much recent work: Eeckhout (2004), Gabaix (1999),
 Krugman (1996), Rossi-Hansberg and Wright (2004);
 Gabaix and Ioannides (2004).
- o Can check via:
 - 1. Graphs
 - 2. Regressions of ln(i) on constant and $ln(S_i)$

Smaller Factoids on Zipf's Law [for Cities]:

- 1. Broader Sample lowers slope (too few small cities)
- 2. Narrowing Definition raises slope
- 3. Works across time and countries

Gibrat's Law [for Cities]

- o Expected Growth of City independent of initial size
- o Again, much recent work: Eeckhout (2004), Gabaix (1999), Gabaix and Ioannides (2004).

My Strategy

- o Replicate stylized facts for cities
- o Check analogues for countries

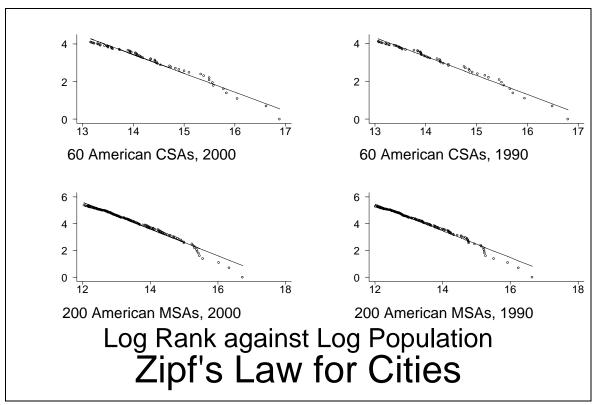
Small Issue: What is a "Country"?

- o No standard definition of "country" exists
- o Two economic definitions:
 - 1. Ricardo: area within which factors are mobile, between which factors are immobile
 - 2. Political: area controlled by government with monopoly of legal coercion

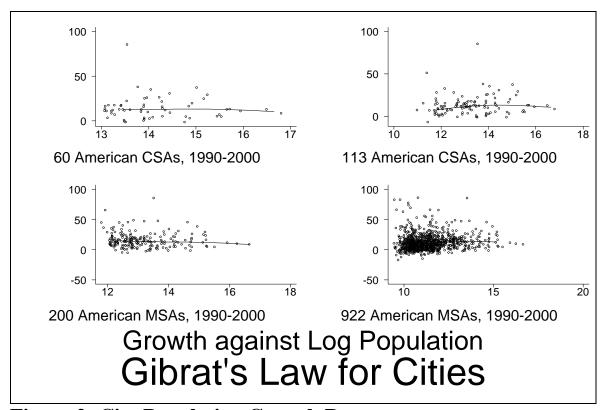
o In practice I use areas considered by *WDI* and also check results on independent sovereign national states

Unimportant in Practice

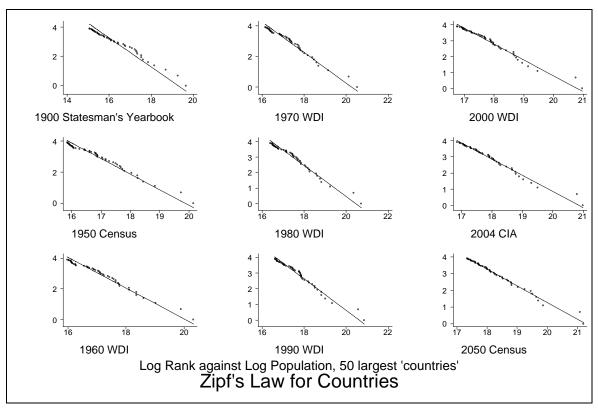
- o Most questionable "countries" are small
- o Still, interesting to note existence of:
 - 1. SARs (e.g., Hong Kong)
 - 2. Associated States (Puerto Rico)
 - 3. Colonies (Cayman Islands)
 - 4. Overseas Possessions (Reunion)
 - 5. ? (West Bank and Gaza)


Data Sources

American Cities from Census


- o Combined Statistical Areas (CSAs)
- o Metropolitan/Micropolitan Statistical Areas (MSAs)
- o Census Designated Places (CDPs)

Countries


- o 1900 from Statesman's Yearbook 1901
- o 1950 from Census
- o 1960-2000 from World Development Indicators
- o 2004 from CIAs World Factbook
- o 2050 projection from Census

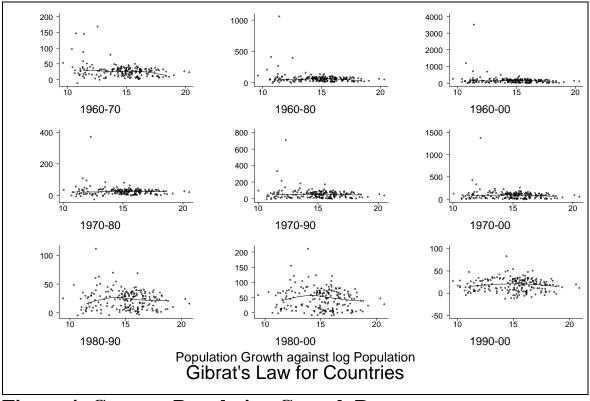

Figure 1: Size Distribution of Cities

Figure 2: City Population Growth Rates

Figure 3: Size Distribution of Countries

Figure 4: Country Population Growth Rates

Table 1: Zipf City Coefficients

Table 1. Zipi City Coefficients						
Year	City	Sample	Slope	$ R^2 $		
	Measure		(se)			
2000	CSAs	50	-1.03	.98		
			(.21)			
1990	CSAs	50	-1.03	.98		
			(.21)			
2000	MSAs	200	-1.01	.98		
			(.1)			
1990	MSAs	200	-1.02	.98		
			(.1)			
2000	CSAs	113	73	.93		
			(.10)			
1990	CSAs	113	74	.93		
			(.10)			
2000	MSAs	922	82	.98		
			(.04)			
1990	MSAs	922	83	.98		
			(.04)			
2000	CDPs	601	-1.34	.998		
			(.08)			

Coefficients are slopes from OLS regressions of log rank on log population.

Table 2: Zipf Country Coefficients

Year	Slope	\mathbb{R}^2	
	(se)		
1900	78	.99	
	(.16)		
1950	87	.99	
	(.17)		
1960	88	.98	
	(.18)		
1970	89	.98	
	(.18)		
1980	- .91	.98	
	(.18)		
1990	93	.98	
	(.19)		
2000	95	.98	
	(.19)		
2004	96	.98	
	(.19)		
2050	99	.99	
	(.20)		

Table 3: Gibrat City Coefficients

City Measure	Sample	Slope (se)	\mathbb{R}^2
CSAs	50	-1.48	.01
		(2.08)	
MSAs	200	01	.00
		(.78)	
CSAs	113	.97	.01
		(.82)	
MSAs	922	1.07**	.01
		(.39)	

Table 4: Gibrat Country Coefficients

		All		Sov's	l	Top	Top
						50	50
Initial	Final	Slope	\mathbb{R}^2	Slope	\mathbb{R}^2	Slope	\mathbb{R}^2
Year	Year	(se)		(se)		(se)	
1960	1970	-3**	.08	7	.01	-1.1	.01
		(1.0)		(.8)		(1.4)	
1960	1980	-9.3*	.05	-5.0*	.02	-3.0	.01
		(4.6)		(2.0)		(3.3)	
1960	1990	-17*	.05	-10**	.07	-5.1	.01
		(8.4)		(3.5)		(5.7)	
1960	2000	-26.6	.04	-20**	.11	-8.9	.02
		(14.4)		(5.6)		(8.5)	
1970	1980	-1.8	.01	-1.3	.02	-2.7	.05
		(1.36)		(.9)		(1.5)	
1970	1990	-4.3	.02	-2.9	.02	-6.1	.05
		(2.7)		(1.8)		(3.5)	
1970	2000	-7.8	.02	-7.3*	.02	-11.2	.06
		(4.9)		(3.0)		(5.8)	
1980	1990	8	.01	9	.01	-2.4	.04
		(.6)		(.7)		(1.4)	
1980	2000	-1.7	.01	-3.6*	.04	-6.1	.05
		(1.1)		(1.5)		(3.2)	
1990	2000	1	.00	-1.2	.02	-2.5	.04
		(.4)		(.7)		(1.6)	

Cities work as usual

- oZipf's Law (and deviations) works well
- o Gibrat's Law works well

Countries work basically as well

- oZipf's Law (and deviations) works well
 - Slopes close to -1, insignificantly different
 - High goodness of fit
 - 1900 the biggest exception
 - Broader sample lowers slope
 - Exact definition of "country" unimportant
 - Works across time

o Gibrat's Law works pretty well too

- Some signs of negative significant relationships
- Poor Fit

Tangent: Log-Normality describes Country Populations

- o Little Kurtosis
- o Some skewness (too fit small countries)
- o Can't reject statistically 1960-2000

So what?

- o An empirical regularity: size distribution of cities similar to size distribution of countries
- o Theoretical Explanation?
 - Little work on size of countries (except Alesina-Spolaore, who don't study distribution)

Much theoretical work on city-size distributions

- oEx: Eeckhout (2004), Krugman (1996), Rossi-Hansberg and Wright (2004)
- o All balance agglomeration benefits (knowledge spillovers, scale economies ...) with negative externalities (congestion, commuting costs, land prices, ...)
- o Need to have and balance both externalities to induce mobile labor to migrate between cities appropriately

City-Size theory not easily applicable to countries!

- o Countries control policies, institutions more
- Mobility higher between cities inside country than between countries
- o Externalities, agglomeration effects, amenity shocks, congestion costs, scale economies ... all more plausible at local than national level

But common empirical regularity makes common theoretical explanation natural.

Conclusion

- o Cities and Countries both adhere reasonably well to:
 - a) Zipf's (size-rank) Law; and
 - b) Gibrat's (growth) law
- o Common empirical resemblance cries out for common theoretical explanation