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The point of this note is to clarify through an example the relationship between the 
covariance assumptions F&R make, and the covariance assumptions made normally in asset-
pricing Finance models.   We make no distribution assumptions and make no specific 
assumptions about the marginal rate of substitution, 1tm + .  It will follow that we can’t 
actually compute any of the relevant covariances, but we really do not need closed forms for 
this point. 
 
From the pricing equation 
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where z is a deflator that will take on several definitions below. Other symbols are defined in 
the text. 
 
So far, nothing new.  Now, however, we make some assumptions about the time series 
processes for prices.  
 
 (This note will produce sufficient but not necessary conditions to produce our 
orthogonality condition.  Just to anticipate, if we can keep the RHS regressor out of the 
covariance term completely we should be comfortable with our assumption – it will give 
consistent estimates.)  
 
Also, to make life easy, let’s suppose that the assets in question do not pay dividends – this is 
easy to fix, but notation intensive. 
 
Following Fama and French, JPE, April ’88 “Permanent and Transitory Components of 
Stock Prices” we model the log of stock prices as follows: 
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where A
tp is the aggregate part of log price and I

tp  is the idiosyncratic part. (F&F do not have 
the aggregate/idiosyncratic split.) We have suppressed the j (firm) superscript as it plays no 
role here. The prices are understood to be individual stock prices. 
 
 For this example we need mess with only the idiosyncratic part, which  is split as: 
 

I
t t tp W T= + , 

 
where W is a random walk or permanent component and T is a transitory component –  the I 
superscript is suppressed for now. (This is the F&F split)  
 
These two components follow: 
 

1t t tW W a−= +  
 
and  
 

1t t tT T bρ −= + ,  1 1ρ− ≤ ≤  
 
where a and b are white. 
 
Now, suppose we set up two filters.   
 
The first is the one we have played with already – it splits price growth into aggregate and 
idiosyncratic components.   
 
The second one will take the idiosyncratic parts and split them into permanent and transitory 
components.   
 
(There are a number of papers on this – all with different splitting rules and different data. 
Fama and French (cited above) is the best known. John Cochrane has a paper in the QJE  
February 1994, and Dupuis and Tessier, have an even more recent working paper “The US 
Stock Market and Fundamentals: A Historical Decomposition” Bank of Canada WP 2003-
20.) 
 
The line is that for high-frequency returns, e.g., monthly, the aggregate innovation variance   
split is between 35% transitory (F&F), 57% transitory (JC) and 70% transitory (the Canadian 
guys).  The Canadian guys find that higher frequency gives a greater variance percentage to 
the transitory. (Note that we need idiosyncratic variance splits, not aggregate variance splits, 
but I doubt this is important for our purposes.) This is a slightly charged literature – Larry 
Summers got it going a bit with his over-reaction work.  The idea is that stock market over-
reactions are inherently transitory – by definition. 
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Once we have done all of our filtering, we build the synthetic price: 
 

ˆA
t t t tp p W Tρ= + +% . 

 
The trick – for this example – is that we have replaced tT  by ˆ tTρ .  These are all logs, so 
our data deflator is ˆexp( ) exp( )A

t t t tp p W Tρ= + +% .  This deflation allows us to remove this 
period’s transitory shock from the synthetic return.  (As always, the synthetic return is not so 
synthetic. It is equivalent to a standard return on portfolio of size ˆexp((1 ) )tTρ−  
 
Our synthetic return is 
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This return is cool. It has been engineered so that it contains none of this periods’ 
idiosyncratic shock –   ta  and tb  have been removed from the synthetic return and from the 

return part of  1
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. (We need to be careful since we have set ˆ( ) 0tTρ ρ− = . 

I think this is ok, but I am a little worried because T is an estimate, not a fixed number.) 
 
It follows that for the deflator we use, the only way the idiosyncratic shock could possibly 
get into COV(,) is through m.  Our maintained condition thus becomes the orthogonality of 
the idiosyncratic shock and m. 
 
Now we construct the regressor.  It is 
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(This always happens in our stuff. The regressor is the same as the portfolio size of standard 
returns.) 
 
 
 
Our regression is: 
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The term error is made up of the rational expectations error, which is orthogonal to tT  
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plus 1
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, which has had all traces of  tT  removed.  We end up, therefore, 

with just what we want. 
 
The advantage of this scheme is that it uses a weaker orthogonality condition than we have 
used in our current paper while preserving our two tricks – the engineered deflator and the 
idiosyncratic regressor.  It also reconciles the relation between our orthogonality condition 
and the one used in most asset-pricing Finance papers. 
 


