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1 Introduction 

 In this paper, we develop and apply a simple methodology to estimate the shadow risk-

free rate or expected intertemporal marginal rate of substitution (hereafter “EMRS”).  We do this 

for two reasons.  First, it is of intrinsic interest.  Second, when different series for the EMRS are 

estimated for different markets, comparing these estimates provides a natural test for integration 

between markets.  Our method is novel in that it exploits information in asset-idiosyncratic 

shocks. 

 While the primary objective of this paper is methodological, we illustrate our technique 

by applying it to monthly and daily data covering firms from large American and Canadian stock 

exchanges.  Our method delivers EMRS estimates with precision and striking volatility.  

Estimates from different markets can be distinguished from each other and from the Treasury bill 

equivalent. 

 Section 2 motivates our measurement by providing a number of macroeconomic 

applications.  We then present our methodology; implementation details are discussed in the 

following section.  Our empirical results are presented in section 5, while the paper ends with a 

brief conclusion. 

 

2 Why Should Macroeconomists Care About Asset Market Integration? 

 We begin with a conventional intertemporal asset pricing condition: 
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where: j
tp  is the price at time t of asset j, Et() is the expectations operator conditional on 

information available at t, 1+tm  is the time-varying intertemporal marginal rate of substitution 

(MRS), used to discount income accruing in period t+1 (also known as the stochastic discount 

factor, marginal utility growth, or pricing kernel), and j
tx 1+  is income received at t+1 by owners 

of asset j at time t (the future value of the asset plus any dividends or other income). 

We adopt the standard definition of asset integration – two assets are said to be 

integrated when the systemic and idiosyncratic risks in those assets are priced identically.  Here 

“priced” means that equation (1) holds for the assets in question.  Equation (1) involves the 

moments of 1+tm  and j
tx 1+ , not the realized values of those variables.  Although many moments of 

1+tm  are involved in asset market integration, the object of interest to us in this study is 1+ttmE  the 

time t expectation of the intertemporal marginal rate of substitution (EMRS).  We concentrate on 

the first moment for three reasons.  First, the expectation of the MRS, 1+ttmE , is intrinsically 

important; it lies at the heart of much intertemporal macroeconomic and financial economics and 

is virtually the DNA of modern aggregate economics.  Second, it is simple to measure, subject to 

certain caveats discussed below.  Third, cross-market differences in estimated values of 1+ttmE  

are statistically distinguishable, providing powerful evidence concerning market integration.  We 

are testing only for first-moment equality when many additional moments are used in asset 

pricing; thus, ours it a test of a necessary condition for integration.  If we reject equality of the 

first moment, we can reject integration, but failing to reject first-moment equality is consistent 

with (but does not imply) complete integration. 

 

2.1 Motivation 
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Asset market integration is a topic of continuing interest in international finance, see e.g., 

Adam et. al. (2002).  It is of special interest in Europe where continuing monetary and 

institutional integration have lead to lower barriers to asset trade inside the EU.  But there are a 

number of compelling reasons why most policy-oriented macroeconomists should be interested 

in asset market integration. 

When macroeconomic modeling was based on descriptive structure a generation ago, 

market integration was not very relevant to macro.  Modern macroeconomic models, however, 

are usually built on the assumption that agents maximize an intertemporal utility function in a 

stochastic setting (e.g., King and Rebelo, 2000, and Clarida, Gali and Gertler, 1999).  In such 

macro models our equation (1) could be used to characterize bond holdings and might look like: 
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The corresponding equation for stock holding or to value firm revenues would be: 
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In equations (2) and (3), 0 1ρ< <  is a constant; )( tcu is a concave period flow of utility function 

with argument period t consumption and )( tc cu  is its partial derivative with respect to period t 

consumption.  The price level at time t is tq ; the one-period interest rate is ti ; 1tx +  and tp  are the 

aggregate counterparts to the symbols defined in equation (1).  
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Equation (2) is the basis for the modern IS curve; equation (3) is an efficiency condition 

for investment undertaken in period t.  The point is that equations (2) and (3) both use the same 

stochastic discount rate, 1
1

1
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c t t

u c qm
u c q
ρ +

+
+

= , to evaluate short-term bonds (equation 2) and the 

payoffs from real productive assets (equation 3).   

In our terminology, modern macro models assume markets pricing bonds and real assets 

to be integrated – both use the same stochastic discount rate.  Asset market integration is a   

transmission channel of monetary policy in these models.  In policy models, monetary authorities 

adjust )1( ti+ in response to the current and expected future state of the economy, see e.g., 

Clarida, Gali and Gertler (1999).  One transmission mechanism has 1+tm  adjusting in equation 

(2) with the discount rate transmitting policy to other decisions, as in equation (3).  Cross-market 

and cross-decision equality of intertemporal discount rates is a substantive assumption.  Testing 

for asset market integration between stocks and money markets (which we do below) can be 

thought of as a specification test for the modern IS curve.  

 The IS curve is just one manifestation of asset market integration. Agents in many 

modern macro models use the same intertemporal discount rate to evaluate all intertemporal 

decisions – consuming vs. saving (the IS curve), enjoying  leisure now vs. enjoying it later (the 

labor supply schedule), investing savings in various assets, and so on.  Because these models 

typically use a single intertemporal discount rate, asset market integration is an essential 

ingredient. 

 In open economy work, e.g., Obstfeld and Rogoff (2000), capital market integration plays 

an even more substantive role.  It is present in all the ways of closed-economy models, plus it 

plays a role in cross-currency and other international asset trading possibilities.  Integration 
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manifests itself perhaps most clearly in pricing foreign-currency bonds.  The foreign- currency 

bond pricing condition is: 
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where *
1tm +  is the discount rate used to price foreign currency assets, ts   is the domestic-currency 

price of foreign exchange, and *
ti  is the foreign-currency interest rate.  Another way to write 

equation (4) is:  
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When pricing of foreign-currency securities is integrated with pricing of domestic-currency 

securities,  *
1 1 1/(1 )t t t tE m E m i+ += = +  and equation (5) becomes 
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which is familiar from the work of Hodrick (1987).  If, however, bond markets are not integrated 

internationally, equation (5) becomes: 
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Without integration, the size of  
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When such tests reject UIP they are usually interpreted in terms of  
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non-zero and correlated with interest rate regressors, but this need not be the whole story.  For 

instance, Alvarez, Atkeson, and Kehoe (2002) interpret the UIP puzzle as well as excess 

volatility results using segmented asset markets, i.e., 1tθ ≠ . 

  

3 Methodology 

Consider a standard decomposition of equation (1): 
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where COVt() denotes the conditional covariance operator.  It is useful to rewrite this as 
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where j
t 1+ε  ≡ )( 11

j
tt

j
t xEx ++ − , a prediction error orthogonal to information at time t, and 

)(/1 1+≡ ttt mEδ .  The latter time-series vector is the set of parameters of interest to us.  In an 
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integrated market without trading frictions, it is identical for all assets.  Our work below is 

essentially concerned with exploiting and testing this restriction.1 

 

3.1  Two Earlier Approaches to Parametric Estimation of Market Integration 

It is typical in domestic finance to make equation (9) stationary by dividing the equation 

by ,j tp , resulting in: 

 

1 1 1 1/ (1 ( , / ))j j j j j
t t t t t t t tx p COV m x pδ ε+ + + += − + ,      (10) 

 

where 1
j

tε + is redefined appropriately.  This normalization converts equation (9) into a traditional 

asset-pricing equation.  That is, it breaks one-period asset returns, 1 /j j
t tx p+ , into the risk-free 

market return, )(/1 1+≡ ttt mEδ , and asset-specific period risk premia, the covariance term.  

Equation (10) is given economic content by adding two assumptions: 

 

1) Rational Expectations: j
t 1+ε  is assumed to be uncorrelated with information 

available at time t, and 

2) Covariance Model: 1 1( , / )j j
t t t tCOV m x p+ +  = ti

j
ii

j f ,0 ββ Σ+  

 

where: j
0β  is an asset-specific intercept, j

iβ  is a set of I asset-specific factor coefficients and tif ,  

a vector of time-varying factors.  Both assumptions are common in the literature; Campbell, Lo 

and MacKinlay (1997) and Cochrane (2001) provide excellent discussions.  With these two 

assumptions, equation (10) becomes a panel estimating equation.   Time-series variation is used 
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to estimate the asset-specific factor loadings }{β , coefficients that are constant across time.  

Estimating these factor loadings is a key objective of this research program. 

In practice, many empirical asset pricing modelers set ( ) 1 ( )t i tδ = + , where ( )i t  is an 

appropriate short-term riskless interest rate.  That is, the EMRS is simply equated with e.g., the 

Treasury-bill rate; it is not estimated at all.  While this simplifies empirical work considerably, 

this assumes integration between stock and money markets, one of the very conditions we wish 

to test rather than assume. 

The first approach to testing asset market integration between a pair of markets makes 

one of the factors, say the first one, equal to a market identifier.  This allows cross-sectional 

estimation of a market-specific effect each period.  For a set of risk factors that are held to price 

assets in both markets, the market-specific effects should all be zero under the null of integration.  

Rejecting the joint null hypothesis – but maintaining rational expectations – rejects either market 

integration, or the risk pricing model (or both). 

Two points are essential to the first approach. First, it is based on the Finance standard 

where the risk premium is postulated to be a function (usually linear) of a set of aggregate risks.  

Second, the market integration test is tested as part of a joint hypothesis that includes the 

aggregate risks that model risk premia.  

A second approach is provided by Flood and Rose (2003), who follow the spirit of Roll 

and Ross (1980) in testing for market integration based on cross-market equality of tδ .  Flood 

and Rose differ slightly from the Finance standard and normalize by 1
j

tp −  instead of j
tp  

 

1 1 1 1 1 1 1/ (( / ) ( , / ))j j j j j j j
t t t t t t t t t tx p p p COV m x pδ ε+ − − + + − += − +     (10’) 
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In this equation, the factor loadings }{β  (from the model used to proxy the covariance model) 

can still be estimated.  But in addition, cross-sectional variation can be used to estimate }{δ , the 

coefficients of interest that represent the EMRS and are time varying but common to all assets.  

Still, this approach – in common with the traditional approach that relies on (10) – requires 

correct specification of the covariance term, e.g., in the form of a factor model.  If the latter is 

mis-specified, the }{δ  estimates will also be incorrect. 

 The traditional finance approach allows one to estimate a covariance model and factor 

loadings (betas) with precision, at the expense of precluding precise estimation of the EMRS 

(since it is assumed to be the T-bill return or is an imprecisely estimated period constant).  The 

second approach is oriented towards estimating the EMRS, but still requires specification of a 

covariance model.  We now continue further down this road and develop a third approach which 

is even more geared towards estimating the EMRS; it does not require any explicit covariance 

model specification. 

 

3.2 A New Strategy 

 The Finance standard, discussed above, and the approach followed by Flood and Rose 

(2003) both require that the discount rate pricing assets in equation (1) be identical for assets in 

an integrated market.  This is a strong assumption. There are many discount rates that give 

identical prices for a given set of payoffs, see e.g. Cochrane (2001) chs. 4-6 or Hansen and 

Richard (1987).  The approach we take presently recognizes that discount rates are not unique. 

Instead of relying on assumptions that makes them unique (e.g., a representative agent 

assumption), we impose instead an insurance assumption that gives unique equilibrium values of 

agents shadow risk free rates, 11/ t tE m + . 
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  Let 1t tE m + be the expectation of the highest discount rate pricing assets in a portfolio 

hypothesized to be integrated.  Then 11/ t tE m + is the lowest shadow risk free rate in the portfolio.  

Since the shadow risk free rate is the price at which agents willingly bear idiosyncratic risks, the 

agent whose discount rate expectation is 1t tE m +  has a comparative advantage in bearing such 

risks. She/he is a natural “insurance agent” who can increase everyone’s expected utility by 

holding the idiosyncratic risks faced by others in exchange for an insurance premium. Assuming 

the stock market reaches an equilibrium where such arbitrage is not possible, which we assume, 

means that either the insurance agent holds all the idiosyncratic risks in a corner solution or that 

the process of pricing and selling idiosyncratic-risk insurance drives different agents’ shadow 

risk free rates into equality.  In either case, the shadow price of holding idiosyncratic risk is 

unique in an integrated market.  

In order to exploit the equality of shadow risk free rates in an integrated portfolio, we 

need to take a stand on systemic risks vs. idiosyncratic risks.  Suppose we observe j
tp~ , the 

“systematic price,” which is defined to be the value of j
tp conditional on idiosyncratic 

information (available at time t) being set to zero.  Consider the regression: 
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where the i
tf are a set of aggregate factors, and j

tv , the residual, is the idiosyncratic part of asset j 

price return.  From the definition of j
tp~ , 
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which is j
tp with its idiosyncratic part set to zero. 

Normalizing by the systematic price delivers: 
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The first term inside the brackets, )~/( j
t

j
t pp , equals )exp( j

tv  , which is a function of only 

idiosyncratic information.  The second term, )~/,( 11
j

t
j

ttt pxmCOV ++  is the covariance of the 

unknown market discount rate, 1+tm , with the synthetic return, j
t

j
t px ~/1+  Similar to the risk 

premium assumption in Finance, we assume )~/,( 11
j
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aggregate phenomena.  Since idiosyncratic risk, )~/( j
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orthogonal to the only regressor, 
j

t
j

t
j

t ppv ~/)exp( = .  The first part, j
t 1+ε , is a forecasting error 

which is unrelated to all information at time t by rational expectations (though there may be a 

common cross-sectional element; more on that below).  The second part,  )~/,( 11
j

t
j

ttt pxmCOV ++  is 
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unaffected by any idiosyncratic phenomena.  Since both terms are orthogonal to the regressor 

that represents idiosyncratic risk, )~/( j
t

j
t pp , the coefficients of interest, }{δ , can be consistently 

estimated via (14).  A correct empirical specification of )~/,( 11
j

t
j

ttt pxmCOV ++  would lead to more 

efficient estimation of }{δ .  However, an empirical specification of )~/,( 11
j

t
j

ttt pxmCOV ++  is 

unnecessary for consistent estimation.2 

The basic idea of this study and the essential way it differs from previous work is that we 

use only asset-idiosyncratic shocks to identify and measure the expected marginal rate of 

substitution (or rather, its inverse), }{δ .  This stands typical Finance methodology – the first 

approach discussed above – on its head.  In traditional asset-pricing Finance, idiosyncratic risk is 

irrelevant and orthogonal to the center-piece measures of aggregate risk.  By their nature, 

idiosyncratic risks are easy to insure against and hence carry no risk premium.  Our test for asset 

market integration is simple; we check if the implied prices of carrying idiosyncratic risks – 

measures of the expected marginal rate of substitution – are equal across assets.  If equality of 

the estimated EMRS cannot be rejected, then our test cannot reject cross-asset integration.  If, 

however, we can reject equality then we also reject integration. 

Our normalization has the advantage – in common with the strategy of Flood-Rose 

(2003) – that it allows estimation of }{δ .  However, it does not rely directly on a correctly 

specified asset pricing model.  That is, we do not explicitly rely on a model 

of )~/,( 11
j

t
j

ttt pxmCOV ++ , (such as, e.g., the CAPM used by Bekaert and Harvey, 1995). 

The essential difference between our method and traditional methods is that we substitute 

a representation of price movements plus an orthogonality condition, for a model 

of ),( 11
j

ttt xmCOV ++ , which incorporates a similar orthogonality condition.  The advantage of our 



 13

method is that it deals only with observable variables. The stochastic discount rate 1+tm  is 

unobservable as are its moments.   When we project asset price movements onto a set of 

aggregate factors, we are taking the same stand on relevant aggregates that others take when they 

model ),( 11
j

ttt xmCOV ++ . The advantage of our method is that it leaves a highly volatile regressor 

– idiosyncratic shocks – attached to )(/1 1+≡ ttt mEδ .  

Our methodology has a number of other strengths.  First, it is based on a general 

intertemporal theoretical framework, unlike other measures of asset integration such as stock 

market correlations (see the discussion in e.g., Adam et. al. 2002).  Second, we do not need to 

model the EMRS directly; we allow it to vary over time in a completely general fashion.  Third, 

the technique requires only accessible and reliable data on asset prices and payoffs.  Fourth, the 

methodology can be used at a full range of frequencies.  Fifth, the technique can be used to 

compare estimates of EMRS across many different classes of intertemporal decisions, including 

saving decisions that involve domestic and foreign stocks, bonds, and commodities.  Sixth, the 

technique is easy to implement and can be applied with standard econometric packages.  Finally, 

the technique is focused on estimating an intrinsically interesting object, the (inverse of the) 

expected marginal rate of substitution. 

 

4 Empirical Implementation 

In practice j
tp~  is an unobservable variable.  Thus, we use an observable statistical 

counterpart derived from an empirical model, denoted j
tp̂  (we note that this may induce 

measurement error, an issue we handle below).  We do this in a straightforward way, using 

simple time-series regressions that link individual asset-price returns to the average.  In 

particular, we estimate the following J time series regressions via ordinary least squares (OLS): 
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where aj, {bj}, and {cj
k} are fixed regression coefficients, tp  is the market-wide average price, 

{ft} are the three Fama-French (1996) factors, and j
tv  is the time-t asset idiosyncratic shock.  

This equation models the first-difference of the natural logarithm of a particular asset price as a 

linear function of the price growth of the market, augmented by the familiar Fama-French 

factors.  The three Fama-French factors are: 1) the overall stock market return, less the treasury-

bill rate, 2) the performance of small stocks relative to big stocks, and 3) the performance of 

“value” stocks relative to “growth” stocks.  Further details and the data set itself are available at 

French’s website.3   

Estimates of equation (15) allow us to produce the fitted value of j
tp̂ , which we define as: 

 

)ˆˆˆ)/ln(ˆˆexp(*ˆ 332211
11 tjtjtjttjj
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j
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 We are not particularly attached to this specific model of j
tp̂ .  For instance, one could 

employ the Kalman filter to avoid using future data and allow for moving coefficient estimates.  

The regressors of equation (15) are meant to control for aggregate factors; one can add/change/or 

subtract some or all of them.  We have assumed that the log first-difference of prices is linear in 

the market and factors; one could change the particular functional form assumption.  We have 

used a time-series approach to estimating j
tp̂ but a cross-sectional approach seems possible.  

None of these assumptions are critical; they simply seem to work for us in practice.4  But while 
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this particular setup has delivered sensible results, we stress that one only needs some model 

for j
tp̂ , not this precise one. 

 

4.1 Estimation 

We are fundamentally interested in estimating }{δ  from the following model: 
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for assets j=1,…,J, periods t=1,…,T.  We allow }{ tδ  to vary arbitrarily period by period. 

Using j
tp̂  in place of the unobservable j

tp~  might induce important measurement error.  

Equation (17) also includes a “generated regressor” which has long been known to be associated 

with potentially overstated precision of standard errors; see Shanken (1992) and Cochrane (2001 

and website correction).  The latter show that this is not typically very important in practice, 

especially for monthly data.  Estimation via the Generalized Method of Moments (GMM) allows 

us to handle both potential econometric issues, while not requiring independent and identically 

distributed disturbances.  Accordingly, we use it below, comparing it with OLS (for simplicity).  

As instrumental variables for }ˆ/{ j
t

j
t pp , we use its lag }ˆ/{ 1

j
t

j
t pp − .5 

 

4.2 The Data Sets 

 We employ two different data sets.  The first is a decade of monthly data, spanning 

1994M1 through 2003M12, while the second is a year of daily data for 2003.  We use different 

frequencies both for intrinsic interest and to check the sensitivity of our techniques.  Though 

these frequencies are standard in Finance, there is nothing special about them, and there is no 
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obvious reason why our methodology could not be used at either higher or lower frequencies.  

We focus on stock markets, but again see no reason why bond or other markets could not be 

considered. 

 Our American stock data were extracted from the CRSP data base and consist of month-

end prices and returns (including dividends, if any) for all firms in the S&P 500 (as of the end of 

2003).  We have adjusted for stock splits, and checked and corrected the data for errors.  We 

only retain the 389 companies that have data for the full sample span that were traded on the 

New York Stock Exchange (NYSE).6  Since we are interested in estimating and comparing 

implied EMRS across markets, we also include data from another market.  We add comparable 

data for the firms in the S&P/TSX Composite Index of the Toronto Stock Exchange (TSE).  This 

data set is extracted from Datastream, and we convert Canadian dollars into American using 

comparably timed exchange rates. 

For the monthly data set, we have 120 monthly observations on 389 firms from the S&P 

500 traded on the NYSE, and 152 firms from the TSE.  For the daily data set, we have data for 

246 business days when both the Canadian and American stock exchanges were open, on 440 

NYSE firms, and 223 TSE firms. 

 It has been traditional since at least Fama and MacBeth (1973) to use yields on short-

horizon treasury bills to proxy the risk-free rate, and it is natural for us to compare our estimates 

of the expected risk-free rate with T-bill returns.  We use data on T-bill returns downloaded from 

the Federal Reserve’s website.7 
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5 Results 

 The focus of this paper is estimating the expected marginal rate of substitution.  We begin 

with an illustration that relies on monthly data from 380 firms in the S&P 500 traded on the 

NYSE.  We have 117 observations between March 1994 and November 2003, since we lose two 

observations at the beginning and one at the end of the sample, due to leads/lags. 

 The three graphs on the left of Figure 1 portray estimates of the EMRS from (17), 

denoted }ˆ{ tδ .  These were estimated using two different techniques: GMM and OLS, using only 

the first 190 firms.  The mean of }ˆ{ tδ  is plotted, along with a +/- 2 standard error confidence 

interval band.  The OLS and GMM point estimates are highly correlated.  The primary 

differences between the different estimates lie in the standard errors; both estimators deliver 

small standard errors, with the GMM standard errors being slightly smaller than those of OLS 

(but with more period to period volatility).8  Indeed, we rarely find significant differences 

between the estimators below, and tend to rely on GMM below.9 

 Even though we estimate the expected MRS from only 190 firms, the results seem 

sensible.  Most of the estimates of the (inverse of the) expected monthly MRS are just over unity.  

The sample average of }ˆ{ tδ  over the 117 periods is around 1.011, implying an annual MRS of 

around 1.14 (=1.01112).  While somewhat high compared to e.g., Treasury bill returns, this figure 

is plausible in magnitude.  Further, the measures of EMRS are estimated with precision; the 

confidence intervals are barely distinguishable from the means in the plots.  Still, the most 

striking feature of the expected MRS is not its mean, but its volatility over time.  The standard 

deviation of  }ˆ{ tδ  is around .04 for all estimators, and the point estimates vary over the decade 

between .88 and 1.11.  This considerable volatility in the expected EMRS mirrors our (2003) 

results as well as the famously high lower-bound of Hansen-Jagannathan (1991).10 
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5.1 Integration within the S&P 500 

Do our results depend sensitively on the exact choice of firms chosen?  An easy way to 

check is to estimate }ˆ{ tδ  using data from all 380 firms and look at the differences from the 190-

firm estimates.  This is done on the right side of Figure 1, which graphs the mean and confidence 

intervals of the expected MRS for the three estimators.  In particular, the graphs on the right 

portray the difference between }ˆ{ tδ  estimated from all 380 firms, and }ˆ{ tδ  estimated from only 

the last 190 firms.  The differences are economically small; they average around .004 (for both 

estimators).  They also have (relatively) large standard errors (averaging over .009), so that the 

individual differences are typically statistically insignificant.  In an integrated market, all 

securities should deliver the same expected marginal rate of substitution.  Figure 1 thus delivers 

little evidence of significant departures from integration inside the NYSE. 

The graphs on the right of Figure 1 compare }ˆ{ tδ  on a period by period basis for a given 

estimator.  That is, the figures implicitly ask whether the expected MRS for, say, March 1994, is 

the same when estimated from all 380 firms and only from the last 190.  This is interesting 

because equality of }ˆ{ tδ  derived from different assets is a necessary (but not sufficient) 

condition for market integration.  But it is also interesting to compare the entire set of estimated 

EMRS simultaneously; that is, to test formally for joint equality.  If the disturbances – }ˆ{ j
tu  – 

were normally distributed, this test would be easy to compute via a standard F-test.  However 

and unsurprisingly, there is massive evidence of non-normality in the form of fat tails 

(leptokurtosis).11  Accordingly, we estimate the distribution for our critical values with a 

conventional bootstrap.  With our bootstrapped results, we find the hypothesis of joint equality 
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}ˆ{ tδ  for all 117 observations cannot be rejected at any conventional significance level.  That is, 

we cannot reject integration within the S&P 500.  While this might only indicate a lack of 

statistical power in our techniques, we show later on that it is easy to reject equality of }ˆ{ tδ  

across substantively different markets. 

 

5.2 Estimates of the Expected Marginal Rate of Substitution and Treasury Bills 

The hypothesis of equality of }ˆ{ tδ  cannot be rejected when the 380 firms are split into 

halves.  But are the estimated EMRS similar to treasury-bill returns?  No.  It is easy to generate 

the risk-free rate using an actual interest rate; we simply create )1( tt i+≡δ
r

 where it is the 

monthly return on nominal treasury bills.  The sample average of }{ tδ
r

 is around 1.003 (around 

4.1% annualized), somewhat lower than but close to the sample average of }ˆ{ tδ .   

But while the first moments of our estimated risk-free rate and the T-bill equivalent are 

similar, the second moments are not.  The T-bill rate has considerably lower time-series volatility 

than our estimated EMRS.  The standard deviation of }{ tδ
r

 (across time) is .001, which is smaller 

than that of }ˆ{ tδ  by an order of magnitude!  Since the estimated risk-free rate is so much more 

volatile than the T-bill equivalent, it is unsurprising that the hypothesis of equality between the 

two can formally be rejected at any reasonable level of significance.12 

To summarize, our estimates of the time-varying expectation of marginal rate of 

substitution are intuitively plausible in magnitude, and precisely estimated.  They also display 

considerable volatility over time.  This variation is grossly at odds with the smooth T-bill return.  

Unsurprisingly, we can reject equality between our estimates of EMRS and those of the T-bill. 
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5.3 Common Shocks 

 A referee has forcefully and correctly pointed out to us that aggregate shocks to the 

market would show up in our tδ estimator.  The most obvious way to handle this issue is to 

include a comprehensive set of time-specific intercepts in our estimation of (17).  These 

intercepts represent the period-average of the aggregate shock, along with the period-average 

risk premium.  Omitting intercepts can force these terms into }ˆ{ tδ  

 When we add a set of intercepts, we find that they are typically jointly insignificant.13  

Further, these estimates turn out in practice to be negatively correlated with the market return 

(though imprecisely estimated).  Also, including them reduces the precision of }ˆ{ tδ  

considerably.  Thus, we exclude the intercepts in our default estimation equation.  Still, the 

volatility of }ˆ{ tδ  and the high correlation between }ˆ{ tδ  and the market return, makes us wary of 

assuming away aggregate shocks.  Hence we check below the robustness of our integration 

results to inclusion of this set of intercepts, and try to be conservative in interpreting our 

results.14 

 

5.4 The TSE 

What of different markets?  Figure 2 provides estimates of the expected marginal rate of 

substitution (along with a +/- 2 standard error confidence interval) derived from two different 

markets, the NYSE and the TSE.  We use 380 firms to estimate the EMRS from the NYSE, and 

150 firms to estimate the EMRS from the TSE.  We estimate }ˆ{ tδ  in the same way as above, 

using GMM for 117 observations between 1994M3 and 2003M11.  To facilitate comparison, we 

also graph the EMRS implicit in the short Treasury bill return. 
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For both equity markets, the average value of EMRS seems reasonable, being slightly 

over unity.  These are again estimated with precision; the confidence interval can hardly be 

distinguished from the mean.  But again, the single most striking feature of the estimates is their 

considerable time-series volatility.  The standard deviation (over time) of }ˆ{ tδ  is over .04 for 

both the NYSE and the TSE, in stark contrast to the smooth T-bill return portrayed at the bottom 

of Figure 2. 

Our results for both markets are consistent with our earlier findings.  Different estimators 

(OLS and GMM) deliver economically similar results which are statistically close.  There is 

considerable leptokurtosis. Bootstrapped tests for internal integration indicate that using e.g., half 

the NYSE firms delivers similar estimates of the EMRS to using all the firms.  That is, we find 

little evidence against internal integration for the stock markets. 

We consider these results to be reassuring, given the depth and liquidity of the advanced 

stock markets we consider.  But they might simply indicate a lack of power in our statistical 

techniques; after all, they are simply not rejecting a necessary (but not sufficient) test for market 

integration.  Accordingly, as a more stringent test, we also now test formally for integration 

across markets.  This is also a subject of considerable intrinsic interest. 

 We begin comparing the estimated risk-free rate across markets with a series of scatter-

plots in Figure 3.  The top graph on the left of the Figure compares monthly estimates of }ˆ{ tδ  

from the TSE (on the y-axis) against those derived from the NYSE (on the x-axis).  At the 

bottom-left, we also provide a comparable graph using the T-bill rate on the ordinate.  Clearly, 

the estimates of the expected MRS from the TSE are correlated with that from the NYSE; the 

correlation coefficient is .64.  However they are not identical; the mean absolute difference 
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between the }ˆ{ tδ  derived from the NYSE and the TSE is .03, and almost 20% are greater than 

.05. 

It is straightforward to formally test the hypothesis that the estimated EMRS are equal 

across markets.  We can use a simple Chow test to test for equality between }ˆ{ tδ  derived from 

the 380 NYSE firm with those which also use the 150 TSE stocks.  When we do so, we find 

strong evidence against integration.  The F-test for integration between the NYSE and the TSE is 

well over 10 when we use OLS and comparably high when we use GMM, strongly rejecting the 

null hypothesis of integration.  This is true whether we include a comprehensive set of time-

specific intercepts or not. 

Succinctly, while our estimates of the expected MRS are similar for the different markets, 

they are significantly different in both the economic and statistical senses.  That is, we are able to 

reject the hypothesis of equal EMRS across markets, and thus market integration.  This result is 

intrinsically interesting, since there are few obvious reasons for this market segmentation.  

Moreover, they indicate that our methodology is not lacking in statistical power. 

 

5.5 Daily Results 

Thus far, we have used a decade of monthly data.  We now present results derived from 

the most recent available year of daily data, 2003.  We use closing rates for the 246 days when 

both markets were open (but again lose 3 observations for lead/lags), converting Canadian dollar 

quotes from the TSE into American dollars using a comparable exchange rate.  We consider the 

same pair of markets, noting in passing that both the American and Canadian markets close at 

4:00pm daily in the same time zone. 
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  Figure 4 is the daily analogue to the monthly estimates displayed in Figure 2.  In 

particular, we plot the mean of the expected MRS for both markets, along with a +/- 2 standard 

error confidence interval (the T-bill equivalent is also plotted at the bottom of the figure).  We 

use GMM as our estimator, though essentially nothing changes if we use OLS.  We present 

estimate }ˆ{ tδ  using 440 NYSE firms and 220 TSE firms.   

As with the monthly data set, the means of the series again seem reasonable; they are just 

above 1.001 for both markets.  These magnitudes seem intuitively reasonable, if somewhat high; 

they are roughly comparable in order of magnitude to the T-bill interest rate, which averaged just 

over 1% in 2003.  The series of EMRS are also estimated with considerable precision manifest in 

tight confidence intervals.  There is again evidence of leptokurtosis.  Still, the most striking 

feature of both series of the EMRS is their volatility over time.  This is especially true when one 

compares them with the virtually flat T-bill return.  It is little surprise then that the hypothesis 

that the daily estimates of }ˆ{ tδ  derived from S&P 500 stock prices are statistically far from the 

T-bill equivalent }{ tδ
r

.15 

When we check for internal integration within a market (such as S&P 500 stocks traded 

on the NYSE) by comparing estimates of }ˆ{ tδ  derived from different sets of portfolios, we are 

unable to reject the hypothesis of equality at any reasonable confidence interval.  That is, we 

(unsurprisingly) find no evidence against integration within markets. 

However, as with the monthly data, integration across markets is another story.  The 

scatter-plots of the estimated daily EMRS at the right side of Figure 3 are analogous to those 

with monthly data immediately to the left.  The TSE delivers }ˆ{ tδ  that are positively correlated 

with those from the NYSE; the correlation coefficient is .61 (for either OLS or GMM).  The 
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mean absolute difference between the series is around .006, and range to just over .02.  While 

these may seem small, they are economically large since they are at a daily frequency.  In any 

case, the series are statistically distinguishable.  When we test for equality between the estimates 

of }ˆ{ tδ  portrayed in Figures 3/4, we find the hypothesis rejected for the NYSE against the TSE 

(the F-test statistic is over 24), and again this conclusion does not change when we include a set 

of time-specific intercepts. 

In brief, our daily data set produces similar results to those of our monthly data set.  The 

mean estimates of the expected MRS seem intuitively reasonable, and display volatility far in 

excess of the T-bill.  While we can never reject the hypothesis of internal integration, we always 

reject the hypothesis of integration across markets in the sense of equal EMRS. 

 

6 Conclusion 

 In this paper, we have developed a methodology for estimating the expected 

intertemporal marginal rate of substitution (EMRS).  Our technique relies on exploiting the 

general fact that idiosyncratic risk, which does not alter any risk premia, should deliver a return 

equal to the market's expectation of the marginal rate of substitution.  This enables us to estimate 

the expected risk-free rate from equity price data, an object that is intrinsically interesting.  

Comparing the rates estimated from different markets also provides a natural test for market 

integration, since integrated markets should share a common expected MRS. 

We apply our methodology to a decade of monthly data and a year of daily data, 

including data on stocks traded on the New York and Toronto Stock Exchanges.  For both data 

sets, we find estimates of the expected marginal rate of substitution with reasonable means but 

time-series volatility which is high enough to be puzzling.  We cannot generally reject the 
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hypothesis that markets are internally integrated in the sense that different assets traded on a 

given market seem to have the same expected marginal rate of substitution.  However, we find it 

easy to reject the hypothesis of equal EMRS across markets.  This is both of direct interest, and 

indicates that our technique has statistical power.  Still, we do not wish to claim too much for our 

technique.  When we estimate period constants, they are typically jointly insignificant; 

accordingly, allowing for them does not substantially alter our results.  Including them reduces 

the precision of the estimates of EMRS substantially, but ruling them out a priori seems 

implausible. 

 There are many possible ways to extend our work.  One could add a covariance model to 

equation (14).  A well-specified covariance model should result in more efficient estimates of the 

EMRS.  One could sort stocks into portfolios in some systematic way (e.g., size, industry, or 

beta), and use portfolios instead of individual equities.  Our analysis could be extended to other 

assets, such as long bonds or commodities.  We could imagine more extensive tests for internal 

and cross-market integration.  More or different factors could be added to the first stage 

regression, equation (15).  While our use of the j
tp~  normalization has advantages, others might 

be used instead.  One could test for excess returns that should be possible if EMRS diverges 

across markets, and if the EMRS is not equal to the t-bill rate.  Most importantly, while we have 

been able to reject the hypothesis of integration in the sense of equal expected marginal rates of 

substitution across markets, we have not explained the reasons for this finding of apparent 

market segmentation.  If our result stands up to scrutiny, this important task remains. 
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Figure 1: Estimated Expected MRS, 380 NYSE firms, 1994M3-2003M11: Different Estimators 
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Figure 2: Estimates of Expected Marginal Rate of Substitution, 1994M3-2003M11: Different Markets 
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Figure 3: Scatter-plots of Estimated Expected MRS across Markets 
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Figure 4: Daily Estimates of Expected Marginal Rate of Substitution, 2003 
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Endnotes 
 
1  The assumption of representative agents is sufficient to deliver uniqueness of the EMRS and is common in 
important areas of macroeconomics, finance and international finance.  However, it is not necessary; uniqueness 
obtains with other assumptions, such as a complete set of Arrow-Debreu markets or a set of free-entry insurance 
markets.  With heterogeneity, the estimates we produce below can be unique, but need not equal the EMRSs of all 
agents.  Accordingly, when we refer to “the” EMRS, we are implicitly assuming uniqueness. We discuss this below.  
Hansen and Richard (1987) provide a related discussion. 
2  Our estimates are consistent if we assume joint log-normality of exp( v ) and 1 1cov ( , / )j j

t t t tm x p+ + % .  This 
condition is not necessary for consistency of our estimator, but it is sufficient and understood easily. Under this 
assumption, the log idiosyncratic shocks (v) are assumed normal and uncorrelated with the log aggregate shocks 
generating 1 1cov ( , / )j j

t t t tm x p+ + % .  In future work, we hope to weaken this condition in various ways, for instance 
by using only temporary idiosyncratic shocks.  An alternative set of sufficient conditions for consistency is laid out 
in an unpublished appendix available on the internet. 
3  http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
4  The average R2 from our 380 monthly NYSE estimates of equation (15) is .31, with a range of (.03, .61). 
5  We are not wedded to this particular set of instruments, but our (brief) experiments with others have lead to 
similar results.  
6  This might lead to selection bias, but of ambiguous sign.  Firms that disappear from the sample leave because of 
either positive idiosyncratic shocks and mergers/takeovers, or negative ones and bankruptcy/takeover.  This issue 
may be worthy of more work. 
7  In particular, we use closing secondary bid prices on three-month treasury bills for both daily data sets. 
8  Hausman tests rarely provide indication of any significant difference between the two estimators. 
9  The exception is our bootstrapped tests for integration, where we tend to use OLS for computational simplicity. 
10  We have no implicit model of preferences or technology that could deliver such a volatile EMRS; our task in this 
paper is simply to attempt to measure it. 
11  This is a well-known phenomena; see, e.g., Campbell, Lo, and MacKinlay (1997).  
12  The F-test statistic for equality between the expected MRS and the T-bill return is over 80; under the null 
hypothesis of market integration, it has degrees of freedom (117, 40,000). 
13  For instance, the chi-squared test for setting all the intercepts to zero is insignificant at the .5 confidence level, 
when we use GMM and 380 NYSE stocks, assuming normality.  Because of non-normality, we have also verified 
our key results with the bootstrap. 
14  We note in passing that there is an observational equivalence between common shocks and unobservable changes 
in EMRS.  This is an identification problem similar to the difficulty of differentiating bubbles from expected 
unobserved regime switches, long noted by Flood and Garber, Hamilton and Whiteman, and others.  Implicitly, we 
have assumed away the existence of aggregate shocks to achieve identification.  This assumption makes us 
uncomfortable, despite our intercept tests. 
15  The F-test statistic for equality between the expected MRS and the t-bill return is over 150. 


