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Abstract 
This paper develops a simple methodology to test for asset integration, and applies it within and 
between American stock markets.  Our technique relies on estimating and comparing expected 
risk-free rates across assets.  Expected risk-free rates are allowed to vary freely over time, 
constrained only by the fact that they must be equal across (risk-adjusted) assets in well 
integrated markets. Assets are allowed to have standard risk characteristics, and are constrained 
by the Fama-French factor model of covariances over short time periods.  We find that internal 
integration in the S&P 500 market is never rejected and is generally not rejected in the 
NASDAQ.  Integration between the NASDAQ and the S&P, however, is always rejected 
dramatically. 
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1: Defining the Problem 

 The objective of this paper is to propose and implement an intuitive and simple-to-use 

measure of asset-market integration.  What does asset-market integration mean? We adopt the 

view that financial markets are integrated when assets are priced by the same stochastic discount 

factor (SDF).  More precisely, we define security markets to be integrated if all assets priced on 

those markets satisfy the pricing condition: 
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where: j
tp  is the price at time t of asset j, Et() is the expectations operator conditional on 

information available at t, 1+tm  is the intertemporal marginal rate of substitution (MRS), for 

income accruing in period t+1 (also interchangeably known by many names, including the 

discount rate, stochastic discount factor, marginal utility growth, and pricing kernel), and j
tx 1+  is 

income received at t+1 by owners of asset j at time t (the future value of the asset plus any 

dividends or coupons).   

Our object of interest in this study is 1+ttmE  the time t expectation of the marginal rate of 

substitution (also interchangeably known as, e.g., the risk-free rate, and/or zero-beta return).  

Agents behaving according to equation (1) use the entire perceived distribution of  1tm+  to price 

assets at t.  Nevertheless, we concentrate on its first moment for two reasons.  First, 1+ttmE  is 

simple to measure.  Second, cross-market differences in estimated values of 1+ttmE  turn out in 

practice to be highly illuminating.  In particular, they allow us to use standard risk pricing 

models to discriminate for differences in market integration. 
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We emphasize at the outset that our test investigates a necessary but not sufficient 

condition for market integration.  In other words if two portfolios are well integrated they will 

pass our test, but passing the test does not imply the portfolios to be well integrated.  On the 

other hand if two portfolios fail the test, the portfolios are not well integrated. 

 

2: Methodology 

We use a standard decomposition of equation (1): 
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where COVt() denotes the conditional covariance operator.  It is useful to rewrite this as 
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where j
t 1+ε  ≡ )( 11

j
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j
t xEx ++ − , a prediction error, and )(/1 1+≡ ttt mEδ .  The latter is the vector of 

parameters of interest to us.  In an integrated market, it is identical for all assets.  Our work 

below is essentially concerned with exploiting and testing this restriction. 

 It is traditional to make equation (3) stationary by dividing the equation by ,j tp , resulting 

in: 
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where 1
j

tε + is redefined appropriately.  Dividing through by ,j tp  also converts equation (3) into 

an asset-pricing equation – an equation relating one-period asset returns, 1 /j j
t tx p+ , to the market  

)(/1 1+≡ ttt mEδ , and to the asset-specific period risk premium.  

Equation (4) is then given economic content by adding two assumptions: 

 

1) Rational Expectations: j
t 1+ε  is assumed to be uncorrelated with information 

available at time t, and 

2) Covariance Model: 1 1( , / )j j
t t t tCOV m x p+ +  = 1, +Σ ti

j
ii fβ , for the relevant sample, 

 

where: j
iβ  is a set of I asset-specific factor coefficients and 1, +tif  is a vector of time-varying 

factors.   

Both assumptions are common in the literature; Campbell, Lo and MacKinlay (1997) and 

Cochrane (2001) provide excellent discussions.  Our second assumption is clearly the more 

demanding of the two.  It makes sense given two underlying presumptions: a) “SDF Spanning”; 

an admissible SDF mt+1 can be chosen as an affine function of some factors fi,t+1, i=1,…,I, and b) 

“Time Invariant Coefficients”; in a conditional affine regression of returns on factors, the 

conditional coefficients { j
iβ } are time- invariant.1 

Combining our two assumptions into equation (4) delivers: 
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Equation (5) is now a panel estimating equation.  We use time-series variation to estimate 

the asset-specific factor loadings }{β , coefficients that are constant across time.  We exploit 

cross-sectional variation to estimate }{δ , the coefficients of interest that represent the risk-free 

return and are time varying but common to all assets.2 

Our test for integration is simple.  Estimating (5) for a set of assets j=1,…,J0 and then 

repeating the analysis for the same period of time with a different set of assets j=1,…,J1 gives us 

two sets of estimates of }{δ , a time-series sequence of estimated discount rates.  These can be 

compared directly, using conventional statistical techniques.  Under the null hypothesis of 

market integration, the two sets of }{δ coefficients are equal.  If the two diverge, the hypothesis 

of market integration between the assets is rejected (jointly with the other two assumptions, of 

course).3 

We emphasize that the assumption of a well- functioning factor model is important 

because getting it wrong might lead to inconsistent ( )tδ  estimates.  Accordingly, we take 

precautions.  First, in implementing our new approach, we use the well-known aggregate factors 

used by Fama and French (1996) to model returns in the traditional approach, and we do 

robustness checks.  Second, we require our factor model to hold with constant coefficients only 

over relatively short periods – generally two months of daily data.  Third, we check our results 

against a simpler version of the Fama-French returns model, with only a single market factor.  

(Further sensitivity analysis is available in the working paper version.) 

The measurements we produce are discriminating for market integration, yet they seem 

robust, and confirm both our prior beliefs and previous research (e.g., Chen and Knez, 1995).   In 

the examples below, our measure never rejects internal market integration for portfolios of S&P 
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stocks priced in the NYSE and seldom rejects for portfolios priced on the NASDAQ, but rejects 

integration strongly – by an order of magnitude – between NYSE and NASDAQ portfolios. 

 

3: Relationship to the Literature  

  Asset-market integration is a classic problem with a large associated literature, one 

which has grown along two branches.  The first branch, based on parametric asset-pricing 

models, has been surveyed by Adams et. al. (2002), Cochrane (2001), and Campbell, Lo, and 

MacKinlay (1997).  Karolyi and Stulz (2002) provide a survey of open-economy asset-market 

integration concepts and results. Along this branch, a parametric discount-rate model is used to 

price asset portfolios. Pricing errors are compared across portfolios.  If the portfolios are 

integrated, the pricing errors should not be systematically identifiable with the portfolios in 

which they originate.  Roll and Ross (1980) tested market integration this way using an (APT) 

arbitrage pricing theory model, and a large literature has followed, see e.g., Bekaert and Harvey 

(1995), hereafter “BH”. 

 The second branch of literature grows from the work of Hansen and Jagannathan 

(1991) and is represented by Chen and Knez (1995) and Chabot (2000).  Along this branch, data 

from each supposed market is used to characterize the set of stochastic discount factors (SDF) 

that could have produced the observed data.  Testing for cross market integration involves 

measuring the distance between admissible MRS sets, and asking if, and by how much, they 

overlap.  If a common SDF exists the markets are integrated. If not, measures are available to 

judge the distance between the market-specific SDF sets.  

Our work rests on the first branch, since we use parametric models to condition our 

estimation.  It differs from previous work in three ways. 
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First, we do not measure integration by the full-blown cross-sectional pricing errors 

produced by a particular model. BH, working along the first branch used the definition “Markets 

are completely integrated if assets with the same risk have identical expected returns irrespective 

of the market.” Our market integration measure is based on a subset of the cross-market 

conditions demanded by BH.  Instead of comparing all aspects of a fully parameterized SDF 

models, we measure integration by the implied first moment of the SDF.  The condition we 

study, therefore, a necessary condition for integration. It is a subset of the conditions demanded 

by BH, and also Chen and Knez.  Studying it will be valuable, therefore, only if it is simple to 

produce but still discriminating. 

Second, parametric pricing models are often estimated with long data spans and are thus 

sensitive to parameter instability in time series long enough for precise estimation (e.g., Fama 

and French (1996);  discussion is provided by Cochrane, 2001).  We minimize (but do not avoid 

completely) the instability problem by concentrating attention on a parameter that is 

conditionally invariant to time-series instability.  The measure we use is a free parameter, 

constant across assets but unconstrained across time.  Our measure – borrowed from Roll and 

Ross – is therefore basically cross-sectional.  Thus we can estimate the measure using a short 

time-series dimension. 

Finally, we do not assume that the bond market is integrated with other asset markets.  

When applied to a bond without nominal risk (e.g., a treasury bill), equation (1) implies  
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where: ti  is a risk-free nominal interest rate, and 1+tm  is a nominal MRS.  One tradition, 

common in Economics and Finance, is to assume that the SDF pricing bonds is the same for all 

bonds, and identical to that pricing all stocks (and other assets). We do not impose the 

assumption that the treasury bill rate equals the expectation of the MRS; instead we estimate the 

expected MRS for different assets and compare them. 

 

4: Empirical Implementation 

We begin by estimating our model (5) with the three time-varying factors used by Fama 

and French (1996).  That is, we estimate: 

 

j
tt

j
t

j
t

j
t

j
t

j
t fffpx 11,331,221,111 )1(/ +++++ ++++= εβββδ      (6) 

 

for assets j=1,…,J, periods t=1,…,T.  We allow }{ tδ  to vary period by period, while we use a 

“three-factor” model and allow }{ jβ  to vary asset by asset.  The three Fama-French factors are: 

1) the overall stock market return, less the treasury-bill rate, 2) the performance of small stocks 

relative to big stocks, and 3) the performance of “value” stocks relative to “growth” stocks.  

Further details and the data set itself are available at French’s website.4  We also examine a 

simpler covariance model below. 5 

Equation (6) can be estimated directly with non- linear least squares.  The degree of non-

linearity is not particularly high; conditional on }{ tδ  the problem is linear in }{ jβ  and vice 

versa.  We employ robust (heteroskedasticity and autocorrelation consistent “Newey West”) 

covariance estimators. 
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 We use a moderately high frequency approach.  In particular, we use two-month spans of 

daily data.  Using daily data allows us to estimate the coefficients of interest }{ tδ  without 

assuming that firm-specific coefficients }{ jβ are constant for implausibly long periods of time. 

 Our empirical illustration examines the integration of American equity markets.  Large 

American stocks are traded on liquid markets, which we consider a priori to be integrated.  We 

begin by examining daily data over a quiet two-month period, April-May 1999 (about a year 

before the end of the Clinton bull market).6  Two months gives us a span of over forty business 

day observations; this does not appear to stretch our reliance on a factor model of asset 

covariances excessively, while still allowing us to test financial market integration for an 

interesting span of data.  We see no reason why higher- and/or lower-frequency data cannot be 

used.7 

Our data set is drawn from the “US Pricing” database provided by Thomson Analytics.  

We collected closing rates for the first (in terms of ticker symbol) one hundred firms from the 

S&P 500 that did not go ex-dividend during the months in question.  The absence of dividend 

payments allows us to set j
t

j
t px 11 ++ =  (and does not bias our results in any other obvious way). 

We group our hundred firms into twenty portfolios of five firms each, arranged simply by 

ticker symbol.  We use portfolios rather than individual stocks for the standard reasons of the 

Finance literature.  In particular, as Cochrane (2001) points out, portfolios betas are measured 

with less error than individual betas because of lower residual variance.  They also vary less over 

time (as size, leverage, and business risk change less for a portfolio of equities than any 

individual component).  Portfolio variances are lower than those of individual securities, 

enabling more precise covariance relationships to be estimated.  And of course portfolios are 

what investors tend to use (especially those informed by Finance theory!). 
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Our first sample period consists of 41 days.  Since we lose the first and last observations 

because of lags )( 1
j

tp −  and leads )( 1
j

tx + , we are left with a total of 780 observations in our panel 

data set (20 portfolios x 39 days).  Our data has been checked for transcription errors, both 

visually and with random crosschecking. 

There is no reason that one cannot use more data (longer spans at different frequencies, 

for larger number of firms and/or portfolios grouped non-randomly).  We choose this sample 

(only two months of daily price data for one hundred firms grouped randomly into twenty 

portfolios) deliberately to illustrate the power of our methodology and its undemanding data 

requirements.  However, we also check for sensitivity with respect to the sample below. 

 

5: Results 

We start by splitting our 20 portfolios of S&P stocks into two sets of 10 portfolios each 

(simply by ticker symbol) to estimate the expected marginal rate of substitution (i.e., estimates of 

)](/1[ 1+≡ ttt mEδ ).  Since we are interested in testing for integration, we examine a joint test of 

equality between the two sets of estimated deltas (from the two different sets of ten portfolios).  

The statistical information is contained in the cells at the top left of Table 1.  The log- likelihood 

of (6) estimated from the first set of 10 portfolios is 1176.9; that from the second set of 10 

portfolios is 1177.8.  When (6) is estimated from all 20 portfolios simultaneously so that only a 

single set of }{ tδ  is extracted, the log-likelihood is 2334.3.  Under the hypothesis of integration 

(i.e., the same }{ tδ  for both sets of assets) and normally distributed errors, minus twice the 

difference in the log- likelihoods is distributed as a chi-square with 39 degrees of freedom; a 

likelihood ratio (LR) test.  The test statistic is 40.9, consistent with the hypothesis of integration 

and normal residuals at the .61 confidence level.8 
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 It is well known that asset prices are not in fact normally distributed; Campbell, Lo, and 

MacKinlay (1997).  Rather, there is strong evidence of fat tails or leptokurtosis, and this also 

characterizes our data.9  Accordingly, we used a bootstrap procedure to check the probability 

values for our likelihood ratio tests.10  The bootstrapped critical values for the test of integration 

are higher than those of the chi-squared distribution, reinforcing our view that there is no 

evidence against the null hypothesis of integration. 

 To check for sample sensitivity, we also consider five other sample periods: July-August 

1999, October-November 1999, and the same three two-month samples for the bear market of 

2002.  Results from these other sample periods are also included in Table 1 and are also 

consistent with the hypothesis of integration inside the S&P 500 at all reasonable confidence 

levels. 

 What about the NASDAQ market for smaller stocks?  We follow exactly the same 

procedures, but using data drawn from the NASDAQ market.  We group (again on the basis of 

ticker symbol) data from 100 NASDAQ firms into 20 portfolios of 10 firms each, and test for 

equality of deltas (between the two different sets of deltas, estimated from the two sets of ten 

NASDAQ portfolios) using likelihood ratio tests (again, checking with bootstrapped extreme 

values).  The results are presented in Table 2, and are generally consistent with the null 

hypothesis of integration inside the NASDAQ.  However, two of our samples (July-Aug 1999 

and Oct-Nov 1999) are inconsis tent with integration at the .05 confidence level (these are 

marked with an asterisk).  Both periods occurred shortly before the collapse of the NASDAQ.  

We think of these as intuitive, reasonable results, possibly consistent with the existence of 

“irrational exuberance” manifest in the NASDAQ in the final run-up to the height of the internet 

bubble. 
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 Still, the most interesting question to us is: Is the market for large (S&P 500) stocks 

integrated with the NASDAQ?  It is easy to ask the question by comparing }{ tδ  estimates when 

(6) is estimated with: a) the twenty S&P portfolios; b) the twenty NASDAQ portfolios; and c) all 

forty portfolios pooled together (which is most efficient if the two markets are integrated).  Our 

LR tests for this hypothesis are presented in Table 3 and are grossly inconsistent with the null 

hypothesis of market integration.  The LR test statistics are often an order of magnitude bigger 

than those of Tables 1 and 2.  That is, while the S&P always seems integrated and the NASDAQ 

is generally integrated, the S&P is never integrated with the NASDAQ.  This result is similar to 

that of Chen and Knez (1995). 

 Thus far we have relied on the Fama-French model of asset covariances.  That is, the 

covariance of each asset’s return with the expectation of the MRS is characterized by three 

parameters or factor loadings: the market return minus the T-bill rate ( j
1β ), the difference 

between small and large stock returns ( j
2β ), and the difference between returns of stocks with 

high and low book to market ratios ( j
3β ).  Are our results sensitive to the number of factors 

used?  It turns out that the answer is negative. 

In Table 4 we provide test statistics to examine integration within the S&P and NASDAQ 

and between the two markets, but using only the return on the market instead of the three Fama-

French factors.  The test statistics and conclusions are essentially unchanged.11 

 

6: Summary and Conclusions  

This paper developed a simple method to test for asset integration, and then applied it 

within and between American equity markets.  It relies on estimating and comparing the 

expected risk- less returns implied by different sets of assets.  Our technique has a number of 
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advantages over those in the literature and relies on just two assumptions: 1) rational 

expectations in financial markets; and 2) covariances between discount rates and returns that can 

be modeled with a small number of factors for a short period of time. 

We illustrated this technique with an application to stocks drawn from the NYSE and the 

NASDAQ, and found that: a) the NYSE always seems to be integrated; b) the NASDAQ is 

usually (but not always) integrated; and c) the NYSE and NASDAQ do not seem close to being 

integrated.  Our results seem reasonably insensitive to the exact sample and conditioning model 

used.  

 If our finding of integration within but not across stock markets holds up to further 

scrutiny, the interesting question is not whether financial markets with few apparent frictions are 

poorly integrated but why?  We leave that important question for future research. 
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Log Likelihoods April-May 1999 July-Aug. 1999 Oct.-Nov. 1999 
First 10 portfolios 1176.9 1292.9 1158.6 
Second 10 portfolios 1177.8 1298.2 1161.1 
All 20 portfolios 2334.3 2569.7 2306.2 
LR Integration Test (df) 40.9 (39) 42.7 (41) 27.2 (40) 
 April-May 2002 July-Aug. 2002 Oct.-Nov. 2002 
First 10 portfolios 1408.9 1236.9 1230.8 
Second 10 portfolios 1392.7 1300.6 1209.8 
All 20 portfolios 2786.8 2519.6 2424.8 
LR Integration Test (df) 29.4 (42) 35.7 (42) 31.4 (41) 
Table 1: Integration inside the S&P 500, Fama-French-Factor Model 
 
Log Likelihoods April-May 1999 July-Aug. 1999 Oct.-Nov. 1999 
First 10 portfolios 909.7 1076.3 749.7 
Second 10 portfolios 861.4 999.9 931.0 
All 20 portfolios 1742.4 2030.0 1622.0 
LR Integration Test (df) 57.5 (39) 88.2*  (41) 116.9* (40) 
 April-May 2002 July-Aug. 2002 Oct.-Nov. 2002 
First 10 portfolios 1034.8 1048.6 994.0 
Second 10 portfolios 1182.3 990.6 944.9 
All 20 portfolios 2176.3 2016.8 1907.8 
LR Integration Test (df) 81.8 (42) 44.9 (42) 62.2 (41) 
Table 2: Integration inside the NASDAQ, Fama-French -Factor Model 
Note: ) indicates significantly different from zero at the .05 level, bootstrapped confidence interval. 
 
Log Likelihoods April-May 1999 July-Aug. 1999 Oct.-Nov. 1999 
20 S&P Portfolios 2334.3 2569.7 2306.2 
20 NASDAQ Portfolios 1742.4 2030.0 1622.0 
Combined 3829.5 4406.5 3632.4 
LR Integration Test (df) 494.3** (39) 390.6** (41) 592.0** (40) 
 April-May 2002 July-Aug. 2002 Oct.-Nov. 2002 
20 S&P Portfolios 2786.8 2519.6 2424.8 
20 NASDAQ Portfolios 2176.3 2016.8 1907.8 
Combined 4713.0 4329.8 4129.8 
LR Integration Test (df) 500.2** (42) 413.4** (42) 405.6** (41) 
Table 3: Integration between S&P 500 and NASDAQ, Fama-French -Factor Model 
Note: ** indicates significantly different from zero at the .01 level, bootstrapped confidence interval. 
 
LR Integration Test (df) April-May 1999 (39) July-Aug. 1999 (41) Oct.-Nov. 1999 (40) 
Within S&P 33.2 47.7 39.5 
Within NASDAQ 65.8 57.7 118.9** 
S&P vs. NASDAQ 513.5** 374.8** 595.9** 
 April-May 2002 (42) July-Aug. 2002 (42) Oct.-Nov. 2002 (41) 
Within S&P 50.9 42.6 38.0 
Within NASDAQ 114.7** 53.9 54.9 
S&P vs. NASDAQ 548.1** 338.5** 379.2** 
Table 4: Integration within and between S&P 500 and NASDAQ, One-Factor Model 
Note: ** indicates significantly different from zero at the .01 level, bootstrapped confidence interval. 
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Endnotes 
 
1  We are grateful to an anonymous referee for clarifying this. 
2  Thus our estimator is outside the scope of traditional empirical asset pricing models, since they typically set the 
expected MRS to an appropriate short-term riskless interest rate; more on this below. 
3  Other methods of estimating }{δ  are discussed in the earlier version of this paper. 
4  http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
5  Other covariance models are used in the earlier version of the paper, and deliver similar conclusions. 
6  We choose these months to avoid January (and its effect), February (a short month), and March (a quarter-ending 
month), but test for sample sensitivity extensively below. 
7  For instance, we could use data at five-minute intervals for a day, making our assumption of constant asset-
specific effects even more plausible; but the question of whether financial markets are integrated over hours (not 
weeks) is less interesting to us. 
8  More evidence, including time -series plots derived from a different model, is provided in the working paper 
version. 
9  Jarque-Bera tests are inconsistent with the null hypothesis for {ε} at all reasonable confidence levels. 
10  Our bootstrap procedure is as follows.  We estimate the deltas from (say) all 20 portfolios under the null 
hypothesis of integration.  This gives us an estimate of {ε}.  We then draw randomly with replacement from this 
vector to create an artificial vector of {ε} which we use to construct an artificial regressand variable {x}.  Using this 
artificial data we then generate a likelihood ratio test by estimating the model from the first set of 10 portfolios, the 
second set of 10 portfolios, and the combined set of 20.  We then repeat this procedure a large number of times to 
generate a distribution for the LR test statistic. 
11  Integration is now rejected for the NASDAQ in April-May 2002 instead of July-Aug 1999. 


